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I Introduction

The absence of arbitrage opportunities implies the existence of a pricing kernel, also known

as the stochastic discount factor (SDF), such that the equilibrium price of a traded secu-

rity can be represented as the conditional expectation of the future payoff discounted by

the pricing kernel. The standard consumption-based asset pricing model, within the rep-

resentative agent and time-separable power utility framework, identifies the pricing kernel

as a simple parametric function of consumption growth. However, pricing kernels based on

consumption growth alone cannot explain either the historically observed levels of returns,

giving rise to the Equity Premium and Risk Free Rate Puzzles (e.g., Mehra and Prescott

(1985), Weil (1989)), or the cross-sectional dispersion of returns between different classes of

financial assets (e.g., Hansen and Singleton (1983), Mankiw and Shapiro (1986), Breeden,

Gibbons, and Litzenberger (1989), Campbell (1996)).1

Nevertheless, there is considerable empirical evidence that consumption risk does mat-

ter for explaining asset returns (e.g., Lettau and Ludvigson (2001a, 2001b), Parker and

Julliard (2005), Hansen, Heaton, and Li (2008), Savov (2011)). Therefore, a burgeoning

literature has developed based on modifying the preferences of investors and/or the struc-

ture of the economy. In such models the resulting pricing kernel can be factorized into

an observable component consisting of a parametric function of consumption growth, and

a potentially unobservable, model-specific, component. Prominent examples in this class

include: the external habit model, where the additional component consists of a function

of the habit level (Campbell and Cochrane (1999); Menzly, Santos, and Veronesi (2004));

the long run risks model based on recursive preferences, where the additional component

consists of the return on total wealth (Bansal and Yaron (2004)); and models with hous-

ing risk, where the additional component consists of the growth in the expenditure share

on non-housing consumption (Piazzesi, Schneider, and Tuzel (2007)). The additional, and

potentially unobserved, component may also capture deviations from rational expectations

(e.g., Brunnermeier and Julliard (2007)), models with robust control (e.g., Hansen and

Sargent (2010)), heterogeneous agents (e.g., Constantinides and Duffie (1996)), ambiguity

aversion (e.g., Ulrich (2010)), as well as a liquidity factor arizing from solvency constraints

1Recently, Julliard and Ghosh (2012) show that pricing kernels based on consumption growth alone cannot
explain either the equity premium puzzle, or the cross-section of asset returns, even after taking into account
the possibility of rare disasters.
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(e.g., Lustig and Nieuwerburgh (2005)).

In this paper, we propose a new methodology to analyze dynamic asset pricing models,

such as those described above, for which the SDF can be factorized into an observable

component and a potentially unobservable one. Our no-arbitrage approach allows us to: a)

filter from the data the most likely estimate of the time series of the unobserved pricing

kernel; b) construct entropy bounds to assess the empirical plausibility of candidate SDFs;

c) estimate, given a fully observable pricing kernel, the minimum (in the information sense)

adjustment of the SDF needed to correctly price asset returns. This methodology provides

useful diagnostic tools for studying the ways in which various models might fail empirically,

and allows us to characterize some properties that a successful model must satisfy.

First, we show that, given a set of asset returns and consumption data, a relative en-

tropy minimization approach can be used to extract, non-parametrically, the time series of

both the SDF and its unobservable component (if any). This methodology identifies the

most likely, in an information-theoretic sense, time series of the SDF and its unobservable

component: we show that the entropy minimization approach is equivalent to maximizing

the expected risk neutral likelihood under a set of no arbitrage restrictions. Moreover, given

a fully observable pricing kernel, this procedure identifies the most likely modification of the

SDF that enables it to price asset returns correctly, while adding to it a minimum amount

of extra information. Along this dimension our paper is close in spirit to, and innovates

upon, the long tradition of using asset prices (mostly options) to estimate the risk neutral

probability measure (see, e.g., Jackwerth and Rubinstein (1996), and Ait-Sahalia and Lo

(1998)) and use this information to extract an implied pricing kernel (see, e.g., Ait-Sahalia

and Lo (2000), Rosenberg and Engle (2002), and Ross (2011)).

Empirically, our estimated time series for the unobservable pricing kernel is substantially

(but far from perfectly) correlated with the Fama and French (1993) factors, for a variety

of sample frequencies and assets used in the estimation (even using only assets, like the

industry and momentum portfolios, that are not well priced by the Fama–French factors).2

This suggests that our approach successfully identifies the pricing kernel, and provides a

rationalization of the empirical success of the Fama–French factors. The estimated most

2This correlation ranges from .45 to .81 when Fama–French portfolios are used in the estimation of the
most likely SDF, while it is reduced to the .43–.70 range when considering only industry or momentum
portfolios.
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likely SDF has a clear business cycle pattern but also shows significant and sharp reactions

to stock market crashes (even if these crashes do not result in economy-wide contractions).

Moreover, we show that while the SDFs of most of the equilibrium models tend to adequately

account for business cycle risk, they nevertheless fail to show significant reactions to market

crashes, and this hampers their ability to price asset returns—that is, all models seem to

be missing a market crash risk component.

Second, we construct entropy bounds that restrict the admissible regions for the SDF and

its unobservable component. Our results complement and improve upon the seminal work

by Hansen and Jagannathan (1991), which provides minimum variance bounds for the SDF,

and Hansen and Jagannathan (1997) (the so called second Hansen–Jagannathan distance),

which identifies the minimum variance (linear) modification of a candidate pricing kernel

needed for it to be consistent with asset returns. The use of an entropy metric is also closely

related to Stutzer (1995, 1996), which first suggested constructing entropy bounds based on

asset pricing restrictions, and Alvarez and Jermann (2005), who derive a lower bound for

the volatility of the permanent component of investors’ marginal utility of wealth (see also

Backus, Chernov, and Zin (2011), Bakshi and Chabi-Yo (2011) and Kitamura and Stutzer

(2002)). We show that a second order approximation of the risk neutral entropy bounds

(Q bounds) have the canonical Hansen–Jagannathan (HJ) bounds as a special case, but

are generally tighter since they naturally impose a non-negativity restriction on the pricing

kernel. Using the multiplicative structure of the pricing kernel, we are able to provide

novel bounds (M bounds) that have higher information content, and are tighter, than the

risk neutral entropy bounds and those of Hansen and Jagannathan (1991). Moreover, our

approach improves upon Alvarez and Jermann (2005) in that a decomposition of the pricing

kernel into permanent and transitory components is not required (but is still possible), and

we can accommodate an asset space of arbitrary dimension.

Our methodology can also be used to construct bounds (Ψ bounds) for the potentially

unobserved component of the pricing kernel. We show that for models in which the pricing

kernel is a function only of observable variables, the Ψ bounds are the tightest ones, and

can be satisfied if and only if the model is actually able to correctly price assets. Moreover,

when the pricing kernel is fully observable, our Ψ bounds are closely related to the second

Hansen–Jagannathan distance: HJ identify the minimum variance linear adjustment, while
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our approach identifies the minimum entropy multiplicative (or log-linear) adjustment that

would make a candidate pricing kernel consistent with the observed asset returns. We show

that the key difference between the two approaches is that the entropy one focuses not only

on the second moment deviations, but also on all other higher moments. In an empirical

example using stock return data we find that these higher moments play an important role:

driving about 22%–26% of the entropy of the most likely pricing kernel.

Third, we demonstrate how our methodology provides useful diagnostic tools to assess

the plausibility of some of the most well known consumption-based asset pricing models,

and lends new insights into their empirical performance. For the standard time separable

power utility model, we show that the pricing kernel satisfies the Hansen and Jagannathan

(1991) bound for large values of the risk aversion coefficient, and the Q and M bounds for

even higher levels of risk aversion. However, the Ψ bound is tighter and is not satisfied for

any level of risk aversion. We show that these findings are robust to the use of the long run

consumption risk measure of Parker and Julliard (2005), despite the fact that this measure

of consumption risk is able to explain a substantial share of the cross-sectional variation

in asset returns with a small risk aversion coefficient. Considering more general models of

dynamic economies, such as models with habit formation, long run risks in consumption

growth, and complementarities in consumption, we find that the SDFs implied by all of

them a) correlate poorly with the filtered most likely SDF, b) require implausibly high

levels of risk aversion to satisfy the entropy bounds, and c) tend to understate market crash

risk, in particular the risk associated with market crashes that do not result in recessions.

Moreover, the empirical application illustrates that inferences based on the entropy bounds

deliver results that are much more stable, in evaluating the plausibility of a given model

across different sets of assets and data frequencies, than the cross-sectional R2 (which,

instead, tends to vary wildly for the same model).

Compared to the previous literature, our nonparametric approach offers five main ad-

vantages: i) it can be used to extract information not only from options, as is common in

the literature, but also from any type of financial asset; ii) instead of relying exclusively

on the information contained in financial data, it allows us to also exploit the information

about the pricing kernel contained in the time series of aggregate consumption, thereby

connecting our results to macro-finance modeling; iii) the relative entropy extraction of the
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SDF is akin to a nonparametric maximum likelihood procedure and thereby provides the

most likely estimate of its time series; iv) the methodology has considerable generality, and

may be applied to any model that delivers well-defined Euler equations and for which the

SDF can be factorized into an observable component and an unobservable one (these include

investment-based asset pricing models, and models with heterogenous agents, limited stock

market participation, and fragile beliefs); v) it relies not only on the second moment of the

pricing kernel, but also on all higher moments.

The remainder of the paper is organized as follows. Section II presents the information-

theoretic methodology, the entropy bounds developed, and their properties. Section III uses

the Consumption-CAPM with power utility as an illustrative example of the application of

our methodology. Section IV applies the diagnostic tools developed in this paper to the

analysis of more general models of dynamic economies. Section V concludes and discusses

extensions. The Appendix contains proofs, additional empirical results and theoretical

details, and a thorough data description.

II Entropy and the Pricing Kernel

In the absence of arbitrage opportunities, there exists a strictly positive pricing kernel,

Mt+1, or stochastic discount factor (SDF), such that the equilibrium price, Pit, of any asset

i delivering a future payoff, Xit+1, is given by

Pit = Et [Mt+1Xit+1] . (1)

where Et is the rational expectation operator conditional on the information available at

time t. For a broad class of models, the SDF can be factorized as follows

Mt = m (θ, t)× ψt (2)

where m (θ, t) denotes the time t value of a known, strictly positive, function of observable

data and the parameter vector θ ∈ Θ ⊆ Rk with true value θ0, and ψt is a potentially unob-

servable component. In the most common case, m (θ, t) is simply a function of consumption

growth, i.e., m (θ, t) = m (θ,∆ct), where ∆ct ≡ log Ct
Ct−1

and Ct denotes the consumption

flow at time t.
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Equations (1) and (2) imply that, for any set of tradable assets, the following vector of

Euler equations must hold in equilibrium

0 = E [m (θ, t)ψtR
e
t ] ≡

∫
m (θ, t)ψtR

e
tdP (3)

where E is the unconditional rational expectation operator,3 Re
t ∈ RN is a vector of excess

returns on different tradable assets, and P is the unconditional physical probability measure.

Under weak regularity conditions, the above pricing restrictions for the SDF can be rewritten

as

0 =

∫
m (θ, t)

ψt
ψ̄

Re
t dP =

∫
m (θ, t) Re

t dΨ ≡ EΨ [m (θ, t) Re
t ]

where x̄ ≡ E [xt], and ψt
ψ̄

= dΨ
dP is the Radon–Nikodym derivative of Ψ with respect to P . For

the above change of measure to be legitimate, we need absolute continuity of the measures

Ψ and P .

Therefore, given a set of consumption and asset returns data, for any θ, one can obtain

a non-parametric maximum likelihood estimate (as formally shown in Appendix A.1) of the

Ψ probability measure as follows:

Ψ∗(θ) ≡ arg min
Ψ

D (Ψ||P ) ≡ arg min
Ψ

∫
dΨ

dP
ln
dΨ

dP
dP s.t. 0 =EΨ [m (θ, t) Re

t ] , (4)

where, for any two absolutely continuous probability measures A and B, D (A||B) :=∫
ln dA

dBdA ≡
∫
dA
dB ln dA

dBdB denotes the relative entropy of A with respect to B, i.e., the

Kullback–Leibler Information Criterion (KLIC) divergence between the measures A and B

(White (1982)). Note that D (A||B) is always non-negative, and has a minimum at zero

that is reached when A is identical to B. This divergence measures the additional informa-

tion content of A relative to B and, as pointed out by Robinson (1991), is very sensitive

to any deviation of one probability measure from another. Therefore, the above equation is

a relative entropy minimization under the asset pricing restrictions coming from the Euler

equations. That is, the minimization in Equation (4) estimates the unknown measure Ψ as

the one that adds the minimum amount of additional information needed for the pricing

3Our setting can accomodate departures from rational expectations as long as the objective and subjective
probability measures are absolutely continuos (i.e., as long as the two measures have the same zero probability
sets). If agents had subjective beliefs of this type, Equation (3) would still hold, with E denoting rational
expectations, but ψt would contain a change of measure element capturing the discrepancy between subjective
beliefs and the rational expectations (see, e.g., Hansen (2014, footnote 35) and Basak and Yan (2010)).
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kernel to price assets.

To understand the information-theoretic interpretation of the estimator of Ψ, let F

be the set of all probability measures on RN+N ′ , where N ′ denotes the dimensionality of

the observables in m (θ, t), and for each parameter vector θ ∈ Θ, define the following set

of probability measures Ψ(θ) ≡
{
ψ ∈ F : Eψ [m (θ, t) Re

t ] = 0
}

which are also absolutely

continuous with respect to the physical measure P in Equation (3). If the observable

component of the SDF, m (θ, t), correctly prices assets at the given value of θ, we have that

P ∈ Ψ(θ), and P solves Equation (4) delivering a KLIC value of 0. On the other hand, if

m (θ, t) is not sufficient to price assets, P is not an element of Ψ(θ) and there is a positive

KLIC distance D (Ψ||P ) > 0 attained by the solution Ψ∗(θ). Thus, the estimation approach

searches for a Ψ∗(θ) that adds the minimum amount of additional information needed for

the pricing kernel to price asset returns.

The above approach can also be used, as first suggested by Stutzer (1995), to recover

the risk neutral probability measure (Q) from the data as

Q∗ ≡ arg min
Q

D (Q||P ) ≡ arg min
Q

∫
dQ

dP
ln
dQ

dP
dP s.t. 0 =

∫
Re
tdQ ≡ EQ [Re

t ] (5)

under the restriction that Q and P are absolutely continuous.

The definition of relative entropy, or KLIC, implies that this discrepancy metric is not

symmetric, that is, generally D (A||B) 6= D (B||A) unless A and B are identical (hence their

divergence is always zero).4 This implies that for measuring the information divergence

between Ψ and P , as well as between Q and P , we can also invert the roles of Ψ and P in

Equation (4), and the roles of Q and P in Equation (5), to recover Ψ and Q as

Ψ∗(θ) ≡ arg min
Ψ

D (P ||Ψ) ≡ arg min
Ψ

∫
ln
dP

dΨ
dP s.t. 0 =EΨ [m (θ, t) Re

t ] , (6)

Q∗ ≡ arg min
Q

D (P ||Q) ≡ arg min
Q

∫
ln
dP

dQ
dP s.t. 0 =EQ [Re

t ] . (7)

The divergence D (P ||Ψ) can be thought of as the information loss from measure Ψ to

measure P (and similarly for D (P ||Q)). This alternative approach, once again, chooses Ψ

4Information theory provides an intuitive way of understanding the asymmetry of the KLIC: D (A||B)
can be thought of as the expected minimum amount of extra information bits necessary to encode samples
generated from A when using a code based on B (rather than using a code based on A). Hence generally
D (A||B) 6= D (B||A) since the latter, by the same logic, is the expected information gain necessary to encode
a sample generated from B using a code based on A.
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and Q such that assets are priced correctly and such that the estimated probability measures

are as close as possible (i.e., minimizing the information loss of moving from one measure

to the other) to the physical probability measure P .

Note that the approaches in Equations (4) and (6) identify {ψt}Tt=1 only up to a positive

scale constant. Nevertheless, this scaling constant can be recovered from the Euler equation

for the risk free asset (if one is willing to assume that such an asset is observable).

But why should relative entropy minimization be an appropriate criterion for recovering

the unknown measures Ψ and Q? There are several reasons for this choice.

First, as formally shown in Appendix A.1, the approaches in Equations (4)–(7) deliver

non-parametric maximum likelihood estimates of the Q and Ψ measures—that is, the most

likely estimate given the data at hand, without having to make parametric assumptions

about the functional form of the SDF in the case of Equations (5) and (7) or the ψ component

of the SDF in the case of Equations (4) and (6). That is, the above KLIC minimization

is equivalent to maximizing the likelihood in an unbiased procedure for finding the pricing

kernel or the ψt component of the pricing kernel. Note that this is also the rationale

behind the principle of maximum entropy (see, e.g., Jaynes (1957a, 1957b)) in the physical

sciences and Bayesian probability, which states that subject to known testable constraints

(in our case, the asset pricing Euler restrictions), the probability distribution that best

represents our knowledge is the one with maximum entropy, or minimum relative entropy

in our notation.

Second, the use of relative entropy, due to the presence of the logarithm in the objective

functions in Equations (4)–(7), naturally forces the the pricing kernel to be non-negative.

This, for example, is not imposed in the identification of the minimum variance pricing

kernel of Hansen and Jagannathan (1991).5

Third, our approach to uncover the ψt component of the pricing kernel satisfies the

criterion of Occam’s razor (the law of parsimony), since it adds the minimum amount of

information needed for the pricing kernel to price assets. This is due to the fact that the

relative entropy is measured in units of information.

Fourth, it is straightforward to add conditioning information to construct a conditional

5Hansen and Jagannathan (1991) offer an alternative bound that imposes this restriction, but it is compu-
tationally cumbersome (the minimum variance portfolio is basically an option in this case). See also Hansen,
Heaton, and Luttmer (1995).

9



version of the entropy bounds presented in the next section: given a vector of conditioning

variables Zt−1, one simply has to multiply (element by element) the argument of the integral

constraints in Equations (4), (5), (6) and (7) by the conditioning variables in Zt−1.

Fifth, there is no ex-ante restriction on the number of assets that can be used in con-

structing ψt, and the approach can naturally handle assets with negative expected rates of

return (cf. Alvarez and Jermann (2005)).

Sixth, as implied by Brown and Smith (1990), the use of entropy is desirable if we think

that tail events are an important component of the risk measure.6

Finally, this approach is numerically simple when implemented via duality (see, e.g.,

Csiszar (1975)). That is, when implementing the entropy minimization in Equation (4),

each element of the series {ψt}Tt=1 can be estimated, up to a positive constant scale factor,

by

ψ∗t (θ) =
eλ(θ)′m(θ,t)Re

t

T∑
t=1

eλ(θ)′m(θ,t)Re
t

, ∀t (8)

where λ(θ) ∈ RN is the solution to the following unconstrained convex problem

λ(θ) ≡ arg min
λ

1

T

T∑
t=1

eλ
′m(θ,t)Re

t , (9)

and this last expression is the dual formulation of the entropy minimization problem in

Equation (4).

Similarly, the entropy minimization in Equation (6) is solved by

ψ∗t (θ) =
1

T (1 + λ(θ)′m (θ, t) Re
t )

, ∀t (10)

where λ(θ) ∈ RN is the solution to

λ(θ) ≡ arg min
λ
−

T∑
t=1

log(1 + λ′m (θ, t) Re
t ), (11)

and this last expression is the dual formulation of the entropy minimization problem in

Equation (6).

6Brown and Smith (1990) develop what they call “a Weak Law of Large Numbers for rare events,”that
is, they show that the empirical distribution that would be observed in a very large sample converges to the
distribution that minimizes the relative entropy.
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Note also that the above duality results imply that the number of free parameters avail-

able in estimating {ψ}Tt=1 is equal to the dimension of (the Lagrange multiplier) λ—that is,

it is simply equal to the number of assets considered in the Euler equation.

Moreover, since the λ (θ)s in Equations (9) and (11) are akin to Extremum Estimators

(see, e.g., Hayashi (2000, Ch. 7)), under standard regularity conditions (see, e.g., Amemiya

(1985, Theorem 4.1.3)), one can construct asymptotic confidence intervals for both {ψt}Tt=1

and the entropy bounds presented in the next section.

To summarize, we estimate the ψt component of the SDF non-parametrically, using the

relative entropy minimizing procedures in Equations (4) and (6). The estimate {ψ∗t (θ)}
T
t=1

is then multiplied by the observable component m (θ, t) to obtain the overall SDF, M∗t =

m (θ, t)ψ∗t (θ). Since we have proposed two different relative entropy minimization ap-

proaches, we get two different estimates of the most likely SDF given the data. Asymptoti-

cally, the two should be equal because of the MLE property of these procedures. Neverthe-

less, in any finite sample they could potentially be very different. As shown in our empirical

analysis, the two estimates are very close to each other, suggesting that their asymptotic

behavior is well approximated in our sample.

II.1 Entropy Bounds

Based on the relative entropy estimation of the pricing kernel and its component ψ outlined

in the previous section, we now turn our attention to the derivation of a set of entropy

bounds for the SDF, M , and its components.

Dynamic equilibrium asset pricing models identify the SDF as a parametric function

of variables determined by the consumers’ preferences and the state variables driving the

economy. A substantial research effort has been devoted to developing diagnostic methods

to assess the empirical plausibility of candidate SDFs, as well as to provide guidance for the

construction and testing of other—more realistic—asset pricing theories.

The seminal work of Hansen and Jagannathan (1991) identifies, in a model-free no-

arbitrage setting, a variance minimizing benchmark SDF, M∗t
(
M̄
)
, whose variance places

a lower bound on the variances of other admissible SDFs:

Definition 1 (Canonical HJ bound) For each E [Mt] = M̄ , the Hansen and Jagan-

11



nathan (1991) minimum variance SDF is

M∗t
(
M̄
)
≡ arg min

{Mt(M̄)}T
t=1

√
V ar

(
Mt

(
M̄
))

s.t. 0 =E
[
Re
tMt

(
M̄
)]
. (12)

The solution to the above minimization is M∗t
(
M̄
)

= M̄ + (Re
t − E [Re

t ])
′ βM̄ , where βM̄ =

Cov (Re
t )
−1 (−M̄E [Re

t ]
)
, and any candidate stochastic discount factor Mt must satisfy

V ar
(
Mt

(
M̄
))
≥ V ar

(
M∗t

(
M̄
))

.

The HJ bound offers a natural benchmark for evaluating the potential of an equilibrium

asset pricing model since, by construction, any SDF that is consistent with the observed

data should have a variance that is not smaller than that of M∗t
(
M̄
)
. However, the identified

minimum variance SDF does not impose a non-negativity constraint on the pricing kernel.

In fact, since M∗t
(
M̄
)

is a linear function of the returns, the restrction is not generally

natisfied.7

As noticed in Stutzer (1995), using the Kullback–Leibler Information Criterion mini-

mization in Equation (5), one can construct an entropy bound for the risk neutral proba-

bility measure that naturally imposes the non-negativity constraint on the pricing kernel.

We generalize the idea of using an entropy minimization approach to construct risk neutral

bounds—Q bounds—for the pricing kernel.

In what follows, for a given risk neutral probability measure Q with Radon–Nikodym

derivative dQ
dP = Mt

M̄
, we use D (P ||Q) and D

(
P ||Mt

M̄

)
interchangeably, i.e., D

(
P ||Mt

M̄

)
≡

D (P ||Q) ≡
∫

ln
(
dP
dQ

)
dP ≡ −

∫
ln
(
Mt

M̄

)
dP . Similarly, D

(
Mt

M̄
||P
)
≡ D (Q||P ) ≡

∫
ln
(
dQ
dP

)
dQ ≡∫ dQ

dP ln
(
dQ
dP

)
dP ≡

∫
Mt

M̄
ln
(
Mt

M̄

)
dP .

Definition 2 (Q bounds) We define the following risk neutral probability bounds for any

candidate stochastic discount factor Mt:

1. The Q1 bound:

D

(
P ||Mt

M̄

)
≡
∫
− ln

Mt

M̄
dP > D (P ||Q∗)

where Q∗ solves Equation (7).

7We call the bound in Definition 1 the “canonical” HJ bound since Hansen and Jagannathan (1991,
1997) also provide an alternative bound, which forces the non-negativity of the pricing kernel, but that is
computationally more complex.
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2. The Q2 bound (Stutzer (1995)):

D

(
Mt

M̄
||P
)
≡
∫
Mt

M̄
ln
Mt

M̄
dP > D (Q∗||P )

where Q∗ solves Equation (5).

These bounds, like the HJ bound, use only the information contained in the asset returns

but, unlike the latter, they impose the restriction that the pricing kernel must be positive.

Moreover, under mild regularity conditions, we show that (see Remark 2 in Appendix A.2),

to a second order approximation, the problem of constructing canonical HJ bounds and

Q bounds are equivalent, in the sense that approximate Q bounds identify the minimum

variance bound for the SDF.8 The intuition behind this result is simple: a) a second order

approximation of (the log of) a smooth pdf results in an approximately Gaussian distribution

(see, e.g., Schervish (1995)); b) the relative entropy of a Gaussian distribution is proportional

to its variance; c) the diffusion invariance principle (see, e.g., Duffie (2005, Appendix D))

implies that in the continuous time limit the (equivalent) change of measure does not change

the volatility.

Both the HJ and Q bounds use information about asset returns but do not utilize

information about consumption growth or the structure of the pricing kernel. Instead, we

propose a novel approach that, while also forcing the non-negativity of the pricing kernel, a)

takes into account more information about the form of the kernel, therefore yielding sharper

bounds, and b) allows us to construct bounds for both the pricing kernel as a whole and for

its individual components.

Consider an SDF that, as in Equation (2), can be factorized into two components, i.e.,

Mt = m (θ, t) × ψt where m (θ, t) is a known non-negative function of observable variables

(generally consumption growth) and the parameter vector θ, and ψt is a potentially unob-

servable component. A large class of equilibrium asset pricing models, including ones with

time separable power utility with a constant coefficient of relative risk aversion, external

habit formation, recursive preferences, durable consumption goods, housing, and disappoint-

ment aversion, fall into this framework. Based on the above factorization of the SDF we

8The (sufficient, but not necessary) regularity conditions required for this approximation result are typi-
cally satisfied in consumption-based asset pricing models.
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can define the following bounds.

Definition 3 (M bounds) For any candidate stochastic discount factor of the form of

Equation (2), and given any choice of the parameter vector θ, we define the following bounds:

1. The M1 bound:

D

(
P ||Mt

M̄

)
≡
∫
− ln

Mt

M̄
dP > D

(
P ||m (θ, t)ψ∗t

m (θ, t)ψ∗t

)
≡
∫
− ln

m (θ, t)ψ∗t

m (θ, t)ψ∗t
dP

where ψ∗t solves Equation (6) and m (θ, t)ψ∗t ≡ E [m (θ, t)ψ∗t ] .

2. The M2 bound:

D

(
Mt

M̄
||P
)
≡
∫
Mt

M̄
ln
Mt

M̄
dP > D

(
m (θ, t)ψ∗t

m (θ, t)ψ∗t
||P

)
≡
∫
m (θ, t)ψ∗t

m (θ, t)ψ∗t
ln
m (θ, t)ψ∗t

m (θ, t)ψ∗t
dP

where ψ∗t solves Equation (4).

The above bounds for the SDF are tighter than the Q bounds since, denoting by Q∗ the

minimum entropy risk neutral probability measure,

D

(
P ||m (θ, t)ψ∗t

m (θ, t)ψ∗t

)
≥ D (P ||Q∗) and D

(
m (θ, t)ψ∗t

m (θ, t)ψ∗t
||P

)
≥ D (Q∗||P ) (13)

by construction, and are also more informative since not only is the information contained

in the asset returns used in their construction, but also a) the structure of the pricing kernel

in Equation (2) and b) the information contained in m (θ, t).

Information about the SDF can also be elicited by constructing bounds for the ψt com-

ponent itself. Given the m (θ, t) component, these bounds identify the minimum amount of

information that should be added to ψt for the pricing kernel Mt to be able to price asset

returns.9

Definition 4 (Ψ bounds) For any candidate stochastic discount factor of the form of

Equation (2), and given any choice of the parameter vector θ, we define two lower bounds

for the relative entropy of ψt:

9As with the Q and M bounds, we use interchangeably D (P ||Ψ) and D
(
P ||ψt

ψ

)
, as well as D (Ψ||P ) and

D
(
ψt

ψ̄
||P
)

.
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1. The Ψ1 bound:

D

(
P ||ψt

ψ̄

)
≡ −

∫
ln
ψt
ψ̄
dP > D

(
P ||ψ

∗
t

ψ̄∗

)
where ψ∗t solves Equation (6);

2. The Ψ2 bound

D

(
ψt
ψ̄
||P
)
≡
∫
ψt
ψ̄

ln
ψt
ψ̄
dP > D

(
ψ∗t
ψ̄∗
||P
)

where ψ∗t solves Equation (4).

Besides providing an additional check for any candidate SDF, the Ψ bounds are useful

in that a simple comparison of D
(
ψ∗t
ψ̄∗
||P
)

, D
(
m(θ,t)

m(θ,t)
||P
)

and D (Q∗||P ) can provide a very

informative decomposition in terms of the entropy contribution to the pricing kernel, which

is logically similar to the widely used variance decomposition analysis. For example, if

D
(
ψ∗t
ψ̄∗
||P
)

happens to be close to D (Q∗||P ), while D
(
m(θ,t)

m(θ,t)
||P
)

is substantially smaller,

the decomposition implies that most of the ability of the candidate SDF to price assets

comes from the ψt component.

We note that in principle a volatility bound, similar to the Hansen and Jagannathan

(1991) bound for the pricing kernel, can be constructed for the ψt component. Such a

bound, presented in Definition 5 of Appendix A.2, identifies a minimum variance ψ∗t
(
ψ̄∗
)

component with standard deviation given by

σψ∗ = ψ̄∗
√

E [Re
tm (θ, t)]′ V ar (Re

tm (θ, t))−1 E [Re
tm (θ, t)]. (14)

This bound, like the entropy based Ψ bounds in Definition 4, uses information about the

structure of the SDF but, unlike the latter, does not constrain ψt and Mt to be non-negative

as implied by economic theory. Moreover, using the same approach employed in Remark 2,

this last bound can be obtained as a second order approximation of the entropy based Ψ

bounds in Definition 4.

Equation (14), viewed as a second order approximation to the entropy Ψ bounds, also

makes clear why bounds based on the decomposition of the pricing kernel as Mt = m (θ, t)ψt

offer sharper inference than bounds based on only Mt. Consider for example the case in

which the candidate SDF is of the form Mt = m (θ, t), that is, ψt = 1 for any t. In this case,
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it can easily happen that there exists a θ̃ such that

V ar
(
Mt

(
θ̃
))
≡ V ar

(
m
(
θ̃, t
))
≥ V ar

(
M∗t

(
M̄
))

where V ar
(
M∗t

(
M̄
))

is the HJ bound in Definition 1, that is there exists a θ̃ such that the

HJ bound is satisfied. Nevertheless, the existence of such a θ̃ does not imply that the can-

didate SDF is able to price asset returns. This would be the case if and only if the volatility

bound for ψt is also satisfied since, from Equation (14), we have that under the assumption

of constant ψt the bound can be satisfied only if E [Re
tm (θ0, t)] ≡ E [Re

tMt (θ0)] = 0, that

is, only if the candidate SDF is able to price asset returns.

II.1.1 Residual ψ and the Second Hansen–Jagannathan Distance

If we want to evaluate a model of the form Mt = m (θ, t), i.e., a model without an unob-

servable component, the Ψ bounds will offer a tight selection criterion since, under the null

of the model’s being true, we should have D
(
ψ∗t
ψ̄∗
||P
)

= D
(
P ||ψ

∗
t

ψ̄∗

)
= 0 and this is a tighter

bound than the HJ, Q, and M bounds defined above. The intuition for this is simple: Q

bounds (and HJ bounds) require the candidate model to deliver at least as much relative

entropy (variance) as the minimum relative entropy (variance) SDF, but they do not require

that the m (θ, t) under scrutiny should also be able to price the assets. That is, it might

be the case—as in practice we will show is the case—that for some values of θ both the Q

bounds and the HJ bounds will be satisfied, but nevertheless the SDF grossly violates the

pricing restrictions in the Euler equation (3).

Note that when considering a model of the form Mt = m (θ, t), the estimated ψ∗ com-

ponent is a residual one, i.e., it captures what is missed, for pricing assets correctly, by

the pricing kernel under scrutiny. The residual ψ∗ and the entropy bounds are also closely

related to the second Hansen and Jagannathan bound. Given a model that identifies a SDF

M , Hansen and Jagannathan (1997) assume that portfolio payoffs are elements of a Hilbert

space and consider the minimum squared deviation between M and a pricing kernel q ∈M

(or M+ if non-negativity is imposed), where M denotes the set of all admissible SDFs.
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That is, the second HJ distance is defined as

d2
HJ := min

q∈M
E
[
(Mt − qt)2

]
.

Note that q ∈M can be rewritten as q ∈ L2 satisfying the pricing restriction (1), i.e.

d2
HJ ≡ min

q∈L2
E
[
(Mt − qt)2

]
s.t. 0 =E [qtR

e
t ] ≡ EQ [Re

t ] ,

where the constraint in the above formulation is the same one that we impose for construct-

ing our entropy bounds.

In practice, the second HJ bound looks for the minimum—in a least squares sense—

linear adjustment that makes Mt−λ′Re
t an admissible SDF (where λ arises from the linear

projection of M on the space of returns). This idea of the minimum adjustment of the

second HJ distance is strongly connected to our M and Ψ bounds and residual ψ.

Consider the decomposition Mt = m (θ, t)ψt in its extreme form: Mt ≡ m (θ, t), i.e.,

the case in which the candidate SDF is fully observable and, under the null of the model

under scrutiny, ψm (the model-implied ψ) should simply be a constant. In this case, we can

estimate a residual {ψ∗t }
T
t=1 that should be constant if the model is correct. In this case,

the M1 bound defines the distance

dM1 = min
{ψt}Tt=1

D (P ||Mtψt)−D (P ||Mt) ≡ min
{ψt}Tt=1

D (P ||ψt) s.t. 0 =E [qtR
e
t ]

where qt := Mtψt and we have normalized ψt to have unit mean to simplify exposition, and

note that the second equality is nothing but the Ψ1 bound. Note that in this case we have

logψt ≡ log qt − logMt. That is, while the second HJ distance focuses on the deviation

between q and M , our entropy approach focuses on the log deviations. By construction,

Mtψ
∗
t ∈ M (or M+ if M is nonnegative), that is, once again the relative entropy mini-

mization identifies an admissible SDF in the Hansen and Jagannathan (1997) sense. To

illustrate the link between the second HJ distance and the dM1 distance above, we follow

the cumulant expansion approach of Backus, Chernov, and Zin (2011). Recall that the

cumulant generating function (i.e., the log of the moment generating function) of a random

variable lnxt is kx (s) = lnE
[
es lnxt

]
, and, with appropriate regularity conditions, it admits
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the power series expansion

kx (s) =
∞∑
j=1

κxj
sj

j!
,

where the jth cumulant, κxj , is the jth derivative of kx (s) evaluated at s = 0. That is, κxj

captures the jth moment of the variable lnxt, i.e., κx1 reflects the mean of the variable, κx2

the variance, κx3 the skewness, κx4 the kurtosis, and so on.10

Using the cumulant expansion, the dM1 distance above can be rewritten as

dM1 =
κψ
∗

2

2!
+
κψ
∗

3

3!
+
κψ
∗

4

4!
+ ... (15)

where κψ
∗

j denotes the jth cumulant of (log) ψ∗, and ψ∗ solves

arg min
{ψt}Tt=1

(
κψ2
2!

+
κψ3
3!

+
κψ4
4!

+ ...

)
s.t. 0 =EΨ [m (θ, t) Re

t ] . (16)

The above implies that the ψ∗ component identified by our M1 (and Ψ1) bound has

a very similar interpretation to the second HJ distance: it provides the minimum—in the

entropy sense—multiplicative (or log linear) adjustment that would make m (θ, t)ψ∗t an

admissible SDF. The key difference between the second HJ bound and our M1 bound is

that the former focuses only on the minimum second moment deviation, i.e., on the variance

of qt−Mt, while our bound takes into consideration not only the second moment (captured

by the κψ2 cumulant in Equation (15)), but also all other moments (captured by the κψj>2

cumulants) of the log deviation log qt − logMt ≡ logψt. This implies that if skewness,

kurtosis, tail probabilities, etc. are relevant for asset pricing, our approach would be more

likely to capture these higher moments more effectively than the least squares one. Moreover,

note that the cumulant generating function cannot be a finite-order polynomial of degree

greater than two (see Theorem 7.3.5 of Lukacs (1970)). That is, if the mean and variance

are not sufficient statistics for the distribution of the true SDF, then all the other higher

moments become relevant for characterizing the SDF, and their relevance for asset pricing

is captured by our entropy approach given the one to one mapping between relative entropy

and cumulants. In Table A1 of Appendix A.4, we compute the minimum adjustment to

the CCAPM SDF required to make it an admissible pricing kernel using both of the above

10For instance, if lnxt ∼ N
(
µx;σ2

x

)
, we have κx1 = µx, κx2 = σ2

x, κxj>2 = 0.
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approaches. The results show that, for a wide variety of test assets, the HJ adjustment leads

to an SDF that has a close to Gaussian distribution. The relative entropy adjustment, on

the other hand, results in an SDF having substantial skewness and kurtosis.

The cumulant decomposition also allows us to assess the relevance of higher moments for

pricing asset returns. In particular, with the estimated {lnψ∗t }
T
t=1 at hand, we can estimate

its moments using sample analogs, use these moments to compute the cumulants, and finally

compute the contribution of the jth cumulant to the total entropy of ψ∗ as

κψ
∗

j /j!∑∞
s=2 κ

ψ∗
s /s!

≡
κψ
∗

j /j!

D (P ||Ψ∗)
(17)

as well as the total contribution of cumulants of order larger than j as

∑∞
s=j+1 κ

ψ∗
s /s!∑∞

s=2 κ
ψ∗
s /s!

≡ D (P ||Ψ∗)−
∑j

s=2 κ
ψ∗
s /s!

D (P ||Ψ∗)
. (18)

These statistics are important for comparing the informativeness of our bounds to that

of the second HJ distance since, if the minimum variance deviation had all the relevant

information for pricing asset returns, we would expect

D (P ||Ψ∗)− κψ
∗

2 /2!

D (P ||Ψ∗)
∼= 0 and

κψ
∗

j /j!

D (P ||Ψ∗)
∼= 0 ∀j > 2.

As we will show in the empirical section below, this is not the case.

III An Illustrative Example: the C-CAPM with Power Util-
ity

We first illustrate our methodology for the Consumption-CAPM (C-CAPM) of Breeden

(1979), Lucas (1978) and Rubinstein (1976), when the utility function is time and state

separable with a constant coefficient of relative risk aversion. For this specification of pref-

erences, the SDF takes the form

Mt+1 = δ (Ct+1/Ct)
−γ , (19)

where δ denotes the subjective time discount factor, γ is the coefficient of relative risk aver-

sion, and Ct+1/Ct denotes the real per capita aggregate consumption growth. Empirically,
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the above pricing kernel fails to explain i) the historically observed levels of returns, giving

rise to the Equity Premium and Risk Free Rate Puzzles (e.g., Mehra and Prescott (1985),

Weil (1989)), and ii) the cross-sectional dispersion of returns between different classes of

financial assets (e.g., Mankiw and Shapiro (1986), Breeden, Gibbons, and Litzenberger

(1989), Campbell (1996), Cochrane (1996)).

Parker and Julliard (2005) argue that the covariance between contemporaneous con-

sumption growth and asset returns understates the true consumption risk of the stock

market if consumption is slow to respond to return innovations. They propose measuring

the risk of an asset by its ultimate risk to consumption, defined as the covariance of its

return and consumption growth over the period of the return and many following periods.

They show that while the ultimate consumption risk would correctly measure the risk of an

asset if the C-CAPM were true, it may be a better measure of the true risk if consumption

responds with a lag to changes in wealth. The ultimate consumption risk model implies the

following SDF:

MS
t+1 = δ1+S (Ct+1+S/Ct)

−γ Rft+1,t+1+S , (20)

where S denotes the number of periods over which the consumption risk is measured and

Rft+1,t+1+S is the risk free rate between periods t+ 1 and t+ 1 +S. Note that the standard

C-CAPM obtains when S = 0. Parker and Julliard (2005) show that, empirically, the

specification of the SDF in Equation (20), unlike the one in Equation (19), explains a large

fraction of the variation in expected returns across assets for low levels of the risk aversion

coefficient.

The functional forms of the above two SDFs fit into our framework in Equation (2).

For the contemporaneous consumption risk model, θ = γ, m (θ, t) = (Ct/Ct−1)−γ , and

ψmt = δ, a constant, for all t. For the ultimate consumption risk model, θ = γ, m (θ, t) =

(Ct+S/Ct−1)−γ , and ψmt = δ1+SRft,t+S . Therefore, for each model, we construct entropy

bounds for the SDF and its components using quarterly data11 on per capita real per-

sonal consumption expenditures on nondurable goods and returns on the 25 Fama–French

portfolios for 1947:Q1–2009:Q4 and compare them with the HJ bound.12 We also obtain

the non-parametrically extracted (called “filtered” hereafter) SDF and its components for

11See Appendix A.3 for a thorough data description.
12We use the 25 Fama–French portfolios as test assets because they have been used extensively in the

literature to test the C-CAPM and also constituted the set of base assets in Parker and Julliard (2005).
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γ = 10. For the ultimate consumption risk model, we set S = 11 quarters because the fit of

the model is the greatest at this value, as shown in Parker and Julliard (2005).

Figure 1, Panel A plots the relative entropy (or KLIC) of the filtered and model-implied

SDFs and their ψ components as functions of the risk aversion coefficient γ and the Q1, M1,

and Ψ1 bounds for the contemporaneous consumption risk model in Equation (19). The

black curve with circles shows the relative entropy of the model-implied SDF as a function

of the risk aversion coefficient. For this model, the missing component of the SDF, ψt,

is a constant, hence it has zero relative entropy for all values of γ, as shown by the grey

horizontal line with triangles. The grey dashed curve and the dark grey dotted curve show,

respectively, the relative entropy (as a function of the risk aversion coefficient) of the filtered

SDF and its missing component. The model satisfies the HJ bound (not reported in the

figure) for high values of γ > 64. It satisfies the Q1 bound for even higher values of γ > 72,

as shown by the intersection of the black curve with circles (i.e. the entropy of the model

implied SDF) and the black horizontal dashed-dotted line (the risk neutral bound). The

minimum value of γ at which the M1 bound is satisfied is given by the value corresponding

to the intersection of the black curve with circles and the light grey dashed curve, i.e., it is

the minimum value of γ for which the relative entropy of the model-implied SDF exceeds

that of the filtered SDF. The figure shows that this corresponds to γ = 107. Finally, the

Ψ1 bound identifies the minimum value of γ for which the missing component of the model-

implied SDF has a higher relative entropy than the missing component of the filtered SDF.

Since the former has zero relative entropy while the latter has a strictly positive value for

all values of γ, the model fails to satisfy the Ψ1 bound for any value of γ.

Panel B shows that very similar results are obtained for the Q2, M2, and Ψ2 bounds.

TheQ2 andM2 bounds are satisfied for values of γ at least as large as 73 and 99, respectively,

while the Ψ2 bound is not satisfied for any value of γ. Overall, as suggested by the theoretical

predictions, the Q bounds are tighter than the HJ bound, the M bounds are tighter than

the Q bounds, and the Ψ bounds are tighter than the M bounds.

We also construct confidence bands for the above relative entropy bounds using 1, 000

bootstrapped samples. The 95% confidence bands for the Q1- and Q2 bounds extend over

the intervals [70.0, 109.0] and [69.5, 109.0], respectively, and those for the M1- and M2

bounds cover the intervals [94.5, 157.5] and [86.0, 150.0], respectively. Finally, the Ψ1- and
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Figure 1: The KLIC of the model SDF, Mt = δ (Ct/Ct−1)−γ , and the model ψ (equal to zero in this

case), as well as the Q, M and Ψ bounds as functions of the risk aversion coefficient. The Q (M) bound is

satisfied when the KLIC of Mt is above it, while the Ψ bound is satisfied when the KLIC of ψt is above it.

Panels A and B show, respectively, results when ψ∗t is estimated using Equations (6) and (4), quarterly data

1947:Q1–2009:Q4, and the 25 Fama–French portfolios.

Ψ2 bounds are not satisfied for any finite value of the risk aversion coefficient in any of the

bootstrapped samples. The bootstrap results reveal two points. First, it demonstrates the

robustness of our approach: the two different definitions of relative entropy produce very

similar results. Second, the confidence bands are quite tight in contrast with the large values

of the standard error typically obtained when using GMM type approaches to estimate the

risk aversion parameter.

Figure 2 presents analogous results to Figure 1 for the ultimate consumption risk model

in Equation (20). Panel A shows that the Q1, and M1 bounds are satisfied for γ > 23, and

46, respectively (the HJ bound, not reported, is satisfied for values above 22). These are

almost three times, more than three times, and more than two times smaller, respectively,

than the corresponding values in Figure 1, Panel A, for the contemporaneous consumption

risk model. As for the latter model, the Ψ1 bound is not satisfied for any value of γ. Panel

B shows that the Q2 and M2 bounds are satisfied for γ > 24 and 47, respectively, while the

Ψ2 bound is not satisfied for any value of γ. The bootstrapped 95% confidence bands for the

Q1 and Q2 bounds extend over the intervals [23.0, 35.0] and [24.0, 37.0], respectively, and
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those for the M1 and M2 bounds cover the intervals [36.0, 60.0] and [40.0, 74.0], respectively.

Also, similar to the contemporaneous consumption risk model, the Ψ1 and Ψ2 bounds are

not satisfied for any finite value of the risk aversion coefficient in any of the bootstrapped

samples.
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Figure 2: KLIC of the model SDF, Mt = δ1+S (Ct+S/Ct−1)−γ Rft,t+S , and the model ψ (equal to zero in

this case), as well as the Q, M and Ψ bounds as functions of the risk aversion coefficient. The Q (M) bound

is satisfied when the KLIC of Mt is above it, while the Ψ bound is satisfied when the KLIC of ψt is above

it. Panels A and B show, respectively, results when ψ∗t is estimated using Equations (6) and (4), quarterly

data 1947:Q1–2009:Q4, and the 25 Fama–French portfolios.

It is important to note that even though the best fitting level for the RRA coefficient for

the ultimate consumption risk model is smaller than 10 (γ̂ = 1.5), and at this value of the

coefficient the model is able to explain about 60% of the cross-sectional variation in returns

across the 25 Fama–French portfolios, all the bounds reject the model for low RRA, and the

Ψ bounds are not satisfied for any level of RRA. This stresses the power of the proposed

approach.

The above results indicate that our entropy bounds are not only theoretically, but also

empirically, tighter than the HJ variance bounds. Using the cumulants decomposition in-

troduced in the previous section, we can identify the information content added by taking

into account higher moments of the SDF and its components. In particular, the statistics

in Equations (17) (black dashed-dotted line) and (18) (grey dashed line) are plotted in the
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left panels of Figure 3 (for S = 0) and Figure 4 (for S = 11).
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Figure 3: Left panel: Relative contribution of the cumulants of ψ∗t to D (P ||Ψ∗). Right panel: Densities

of mt := (Ct/Ct−1)−γ and M∗t := (Ct/Ct−1)−γ ψ∗t . ψ∗t is estimated using Equation (6), quarterly data

1947:Q1–2009:Q4, and the 25 Fama–French portfolios, with γ = 10.

The figures show that the contribution of the second moment to D (P ||Ψ∗) is large—

being in the 74%–78%—but that higher moments also play a very important role, with their

cumulated contribution being in the 22%–26% range. Among these higher moments, the

lion’s share goes to the skewness, with its individual contribution being about 18% for both

S = 0 and S = 11.

The relevance of skewness is also outlined in the right panels of Figure 3 (for S = 0)

and Figure 4 (for S = 11) where the (Epanechnikov kernel estimates of the) densities of

mt :=
(
Ct+S
Ct−1

)−10
Rft,t+S and M∗t :=

(
Ct+S
Ct−1

)−10
Rft,t+Sψ

∗
t are presented. These figures show

that besides the increase in variance generated by ψ∗, there is also a substantial increase

in the skewness of our estimated most likely pricing kernel. This point is also shown in

Figures 5 (for S = 0) and 6 (for S = 11), where the left panels present the cumulant

decomposition of the entropy of mt :=
(
Ct+s
Ct−1

)−10
Rft,t+S while the right panel presents the

cumulant decomposition for M∗t := mtψ
∗
t . The figures show that the sources of entropy of

our filtered most likely pricing kernel (mtψ
∗
t ) are very different than those of the consumption

growth component alone (mt): almost all (99%) the entropy of mt is generated by its second

moment, while higher cumulants have basically no role; instead, about a quarter (24%–25%)

of the entropy of mtψ
∗
t is generated by the third and higher cumulants.
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Figure 4: Left panel: Relative contribution of the cumulants of ψ∗t to D (P ||Ψ∗). Right panel: Densities

of mt := (Ct+S/Ct−1)−γ Rft,t+S and M∗t := (Ct+S/Ct−1)−γ Rft,t+Sψ
∗
t . ψ∗t is estimated using Equation (6),

quarterly data 1947:Q1–2009:Q4, and the 25 Fama–French portfolios, with S = 11 and γ = 10.

We now turn to the analysis of the time series properties of the candidate SDFs con-

sidered. Figure 7, Panel A plots the time series of the filtered SDF and its components

estimated using Equation (6) for γ = 10 for the contemporaneous consumption risk model

(S = 0). The black dashed line plots the component of the SDF that is a parametric func-

tion of consumption growth, m (θ, t) = (Ct/Ct−1)−γ . The dotted line with circles plots the

filtered unobservable component of the SDF, ψ∗t , estimated using Equation (6). The black

solid line plots the filtered SDF, M∗t = (Ct/Ct−1)−γ ψ∗t . The grey shaded areas represent

NBER-dated recessions while dark grey dashed-dotted vertical lines correspond to the ma-

jor stock market crashes identified in Mishkin and White (2002).13 The figure reveals two

main points. First, the estimated SDF has a clear business cycle pattern, but also shows

significant and sharp reactions to financial market crashes that do not result in economy-

wide contractions. Second, the time series of the SDF almost coincides with that of the

unobservable component. In fact, the correlation between the two time series is .996. The

observable consumption growth component of the SDF, on the other hand, has a correlation

13Mishkin and White (2002) identify a stock market crash as a period in which either the Dow Jones
Industrial, the S&P500, or the NASDAQ index drops by at least 20% in a time window of either one day,
five days, one month, three months, or one year. Consequently, in yearly figures, we classify a given year
as having a stock market crash if any such event was recorded in that year. Similarly, in quarterly figures,
we identify a given quarter as being a crash period if either a crash was registered in that quarter or if the
entire year (containing the quarter) was identified by Mishkin and White as a stock market crash year.
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Figure 5: Left panel: Contribution of the cumulants of (Ct/Ct−1)−γ to D
(
P || (Ct/Ct−1)−γ

)
. Right panel:

Contribution of the cumulants of (Ct/Ct−1)−γ ψ∗t to D
(
P || (Ct/Ct−1)−γ ψ∗t

)
. ψ∗t is estimated using Equation

(6), quarterly data 1947:Q1–2009:Q4, and the 25 Fama–French portfolios, with γ = 10.

of only .06 with the SDF. Therefore, most of the variation in the SDF comes from variation

in the unobservable component, ψ, and not from the consumption growth component. In

fact, the volatility of the SDF and its unobservable component are very similar, with the

latter accounting for about 99% of the volatility of the former, while the volatility of the

consumption growth component accounts for only about 1% of the volatility of the filtered

SDF. Similar results are shown in Panel B, which plots the time series of the filtered SDF

and its components estimated using Equation (4) for γ = 10.

Finally, Figure 8, Panel A plots the time series of the filtered SDF and its components

estimated using Equation (6) for γ = 10 for the ultimate consumption risk model (S = 11).

The figure shows that, as in the contemporaneous consumption risk model, the estimated

SDF has a clear business cycle pattern, but also shows significant and sharp reactions

to financial market crashes that do not result in economy-wide contractions. However,

unlike the latter model, the time series of the consumption growth component is much more

volatile and more highly correlated with the SDF. The volatility of the consumption growth

component is 21.7%, more than 2.5 times higher than that for the standard model. The

correlation between the filtered SDF and its consumption growth component is .37, an order

of magnitude bigger than the correlation of .06 in the contemporaneous consumption risk

model. This explains the ability of the model to account for a much larger fraction of the
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Figure 6: Left panel: Contribution of the cumulants of (Ct+S/Ct−1)−γ Rft,t+S to

D
(
P || (Ct+S/Ct−1)−γ Rft,t+S

)
. Right panel: Contribution of the cumulants of (Ct+S/Ct−1)−γ Rft,t+Sψ

∗
t to

D
(
P || (Ct+S/Ct−1)−γ Rft,t+Sψ

∗
t

)
. ψ∗t is estimated using Equation (6), quarterly data 1947:Q1–2009:Q4,

and the 25 Fama–French portfolios, with S = 11 and γ = 10.

variation in expected returns across the 25 Fama–French portfolios for low levels of the risk

aversion coefficient. In fact, the cross-sectional R2 of the model is 54.1% (for γ = 10), an

order of magnitude higher than the value of 5.2% for the standard model. However, the

correlation between the ultimate consumption risk SDF and its unobservable component

is still very high at .92, showing that the model is missing important elements that would

further improve its ability to explain the cross-section of returns. Similar results are shown

in Panel B, which plots the time series of the filtered SDF and its components estimated

using Equation (4) for γ = 10.

Overall, the results show that our methodology provides useful diagnostics for dynamic

asset pricing models. Moreover, the very similar results obtained using the two different

types of relative entropy minimization in Equations (4) and (6) suggest the robustness of

our approach.

IV Application to More General Models of Dynamic Economies

Our methodology provides useful diagnostics to assess the empirical plausibility of a large

class of consumption-based asset pricing models where the SDF, Mt, can be factorized

into an observable component consisting of a parametric function of consumption, Ct, as
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Figure 7: The (de-meaned) time series of the filtered SDF, M∗t = m (θ; t)ψ∗t , and its components for

the standard CCAPM for γ =10. Panels A and B show, respectively, results when ψ∗t is estimated using

Equations (6) and (4), quarterly data 1947:Q1–2009:Q4, and the 25 Fama–French portfolios. Shaded areas

are NBER recession periods. Vertical dot-dashed lines are the stock market crashes identified by Mishkin

and White (2002).

in the standard time-separable power utility model, and a potentially unobservable one,

ψt, that is model-specific. In this section, we apply it to a set of “winner” asset pricing

models, i.e., frameworks that can successfully explain the Equity Premium and the Risk

Free Rate Puzzles with “reasonable” calibrations. In particular, we consider the external

habit formation models of Campbell and Cochrane (1999) and Menzly, Santos, and Veronesi

(2004), the long-run risks model of Bansal and Yaron (2004), and the housing model of

Piazzesi, Schneider, and Tuzel (2007). We apply our methodology to assess the empirical

plausibility of these models in two ways. First, since our methodology identifies the most

likely time series of the SDF, we compare this time-series with the model-implied time series
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Figure 8: The (demeaned) time series of the filtered SDF, M∗t = m (θ; t)ψ∗t , and its components for

the ultimate consumption risk CCAPM of Parker and Julliard (2005) for γ =10. Panels A and B show,

respectively, results when ψ∗t is estimated using Equations (6) and (4), quarterly data 1947:Q1–2009:Q4, and

the 25 Fama–French portfolios. Shaded areas are NBER recession periods. Vertical dot-dashed lines are the

stock market crashes identified by Mishkin and White (2002).

of the SDF for each model. Second, for each model we compute the values of the power

coefficient, γ, at which the model-implied SDF satisfies the HJ, Q, M , and Ψ bounds.

In the next sub-section we present the models considered. The reader familiar with these

models can go directly to Section IV.2, which presents the empirical results, without loss of

continuity. A detailed description of the data is presented in Appendix A.3.

IV.1 The Models Considered

IV.1.1 External Habit Formation Model: Campbell and Cochrane (1999)

In this model, identical agents maximize power utility defined over the difference between

consumption and a slow-moving habit or time-varying subsistence level. The SDF is given
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by

Mm
t = (Ct/Ct−1)−γ︸ ︷︷ ︸

m(θ,t)

δ (St/St−1)−γ︸ ︷︷ ︸
ψmt

, (21)

where δ is the subjective time discount factor, γ is a curvature parameter that provides a

lower bound on the time varying coefficient of relative risk aversion, St = Ct−Xt
Ct

denotes the

surplus consumption ratio, and Xt is the habit component. Note that the ψm component

depends on the surplus consumption ratio, S, that is not directly observed. To obtain the

time series of ψm, we extract the surplus consumption ratio from the observed data using

two different procedures.

First, we extract the time series of the surplus consumption ratio from the consumption

data. In this model, the aggregate consumption growth is assumed to follow an i.i.d. process:

∆ct = g + υt, υt ∼ i.i.d.N
(
0, σ2

)
.

The log surplus consumption ratio evolves as a heteroskedastic AR(1) process:

st = (1− φ) s+ φst−1 + λ (st−1) υt, (22)

where st := lnSt and s is the steady state log surplus consumption ratio, and

λ (st) =


1
S

√
1− 2 (st − s)− 1, if st ≤ smax

0, if st > smax

,

smax = s+
1

2

(
1− S2

)
, S = σ

√
γ

1− φ
.

For each value of γ, we use the calibrated values of the model preference parameters (δ, φ) in

Campbell and Cochrane (1999), the sample mean (g) and volatility (σ) of the consumption

growth process, and the innovations in real consumption growth, υ̂t = ∆ct − g, to extract

the time series of the surplus consumption ratio using Equation (22) and, thereby, obtain

the time series of the model-implied SDF and its ψm component.

Second, in this model, the equilibrium market-wide price–dividend ratio is a function of

the surplus consumption ratio alone, although the form of the function is not available in

closed form. Using numerical methods, we invert this function to extract the time series
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of the surplus consumption ratio from the historical time series of the price–dividend ratio

and, thereby, obtain the time series of the model-implied SDF and its ψm component from

Equation (21).

IV.1.2 External Habit Formation Model: Menzly, Santos, and Veronesi (2004)

In this model, the SDF is analogous to that of Campbell and Cochrane (1999) disussed

above. The aggregate consumption growth is also assumed to follow an i.i.d. process:

dct = µcdt+ σcdBt,

where µc is the mean consumption growth, σc > 0 is a scalar, and Bt is a Brownian motion.

The point of departure from the Campbell and Cochrane (1999) framework is that Menzly,

Santos, and Veronesi (2004) assume that the inverse surplus consumption ratio, Yt := 1
St

,

follows a mean reverting process that is perfectly negatively correlated with innovations in

consumption growth:

dYt = k
(
Y − Yt

)
dt− α (Yt − λ) [dct − E (dct)] , (23)

where Y is the long run mean of the inverse surplus consumption ratio and k controls

the speed of the mean reversion. To obtain the time series of ψm (the model implied ψ

component), we extract the surplus consumption ratio from the observed data using two

different procedures.

First, for each value of γ,14 we use the calibrated values of the model parameters(
δ, k, Y , α, λ

)
in Menzly, Santos, and Veronesi (2004), the sample values of µc and σc,

and the innovations in real consumption growth, d̂Bt = [dct−E(dct)]
σc

, to extract the time

series of the surplus consumption ratio, and this allows us to compute the time series of the

model-implied SDF.

Second, in this model, the equilibrium price–consumption ratio of the total wealth port-

folio is a function of the surplus consumption ratio alone. However, this function is not

available in closed form except when γ = 1. Therefore, we rely on log-linear approximations

14Note that the Menzly, Santos, and Veronesi (2004) model assumes that the representative agent has log
utility, i.e., γ is set equal to 1, in order to derive a closed form solution for the price–consumption ratio. For
other values of γ, the model does not admit a closed form solution. Nevertheless, the pricing kernel is well
defined even if γ is different from one, hence we will be considering this more general case.
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to the return on the total wealth portfolio to express the equilibrium log price–consumption

ratio as an affine function of the log surplus consumption ratio for all values of γ. Details

of this procedure are described in Appendix A.5. We, then, invert this affine function to

extract the time series of the surplus consumption ratio from the historical time series of the

market-wide price–dividend ratio and, thereby, obtain the time series of the model-implied

SDF and its ψm component from Equation (21). Note that approximating the total wealth

price–consumption ratio by the market-wide price–dividend ratio is the approach used by

Menzly, Santos, and Veronesi (2004).

IV.1.3 Long-Run Risks Model: Bansal and Yaron (2004)

The Bansal and Yaron (2004) long-run risks model assumes that the representative consumer

has the version of Kreps and Porteus (1978) preferences developed by Epstein and Zin (1989)

and Weil (1989) for which the SDF is given by

Mm
t+1 = δθ

(
Ct+1

Ct

)− θ
ρ

Rθ−1
c,t+1,

where Rc,t+1 is the unobservable gross return on an asset that delivers aggregate consump-

tion as its dividend each period, δ is the subjective time discount factor, ρ is the elasticity

of intertemporal substitution, θ := 1−γ
1−1/ρ , and γ is the relative risk aversion coefficient.

The aggregate consumption and dividend growth rates, ∆ct+1 and ∆dt+1, respectively,

are modeled as containing a small persistent expected growth rate component, xt, that

follows an AR(1) process with stochastic volatility, and fluctuating variance, σ2
t , that evolves

according to a homoscedastic linear mean reverting process.

Appendix A.6 shows that, for the log-linearized model, the log of the SDF and its ψm

component are given by

lnMm
t+1 = c2∆ct+1︸ ︷︷ ︸

lnm(θ,t+1)

+ c1 + c3xt+1 + c4σ
2
t+1 + c5xt + c6σ

2
t︸ ︷︷ ︸

lnψmt+1

(24)

where the parameters (c1, c2, c3, c4, c5, c6) are known functions of the underlying time series

and preference parameters of the model.

To obtain the time series of the SDF and ψm, we extract the state variables, xt and

σ2
t , from the observed data using two different procedures. First, we extract them from the
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consumption data. Second, we extract them from the asset market data, in particular, from

the market-wide price–dividend ratio and the risk free rate. The extraction of the state

variables using these two procedures is described in Appendix A.6. Finally, for each value

of γ, we use the calibrated parameter values from Bansal and Yaron (2004) and the time

series of the state variables to obtain the time series of the SDF and its ψm component from

Equation (24).

IV.1.4 Housing: Piazzesi, Schneider, and Tuzel (2007)

In this model, the pricing kernel is given by

Mm
t = δ (Ct/Ct−1)−γ (At/At−1)

γρ−1
ρ−1 ,

where At is the expenditure share on non-housing consumption, γ−1 is the intertempo-

ral elasticity of substitution, and ρ is the intratemporal elasticity of substitution between

housing services and non-housing consumption.

Taking logs, we obtain

lnMm
t = −γ∆ct︸ ︷︷ ︸

lnm(θ,t)

+ ln δ +
γρ− 1

ρ− 1
∆at︸ ︷︷ ︸

lnψmt

. (25)

Note that, in this model, ψm depends only on the observable variables and therefore does

not need to be extracted from consumption or asset market data. For each value of γ, we

use the calibrated values of the model parameters (δ, ρ) in Piazzesi, Schneider, and Tuzel

(2007) to obtain the time series of the model-implied SDF and its ψm component from

Equation (25).

IV.2 Empirical Results

For our empirical analysis, we focus on two data samples: an annual data sample starting

at the onset of the Great Depression (1929–2009), and a quarterly data sample starting in

the post World War II period (1947:Q1–2009:Q4). A detailed description of the data is

presented in Appendix A.3. Note that, in any finite sample, the extracted time series of

the SDF, as well as the information bounds on the SDF and its unobservable component,

depend on the set of test assets used for their construction. Since the Euler equation holds
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for any traded asset as well as any adapted portfolio of assets, this gives infinitely many

moment restrictions. Nevertheless, econometric considerations necessitate the choice of only

a subset of assets to be used. As a consequence, in our empirical analysis, we compute the

bounds, and filter the time series of the SDF and its components, using a broad cross-section

of test assets. In particular, at the quarterly frequency, the test assets include the 6 size

and book-to-market-equity sorted portfolios of Fama–French, 10 industry-sorted portfolios,

and 10 momentum-sorted portfolios. Due to the smaller available time series at the annual

frequency, we restrict the cross-section of test assets to include the 6 size and book-to-

market-equity sorted portfolios, 5 industry-sorted portfolios, and the first and last deciles

of the 10 momentum-sorted portfolios.

IV.2.1 The Time Series of the Most Likely SDF

Our first approach to assessing the empirical plausibility of these models is based on the

observation that our methodology identifies the most likely time-series of the SDF, which we

call the filtered SDF. That is, given a candidate SDF with observable component m (θ, t),

we use the relative entropy minimizing procedures in Equations (4) and (6) to estimate

a time series for the unobservable (or residual, if the SDF is fully observable) component

{ψ∗t (θ)}
T
t=1, and obtain the filtered SDF as m (θ, t)ψ∗t .

Note that the filtered SDF and its missing component depend on the local curvature of

the utility function γ, since changing γ modifies the constraints in Equations (4) and (6).

Therefore, for each model, we fix γ at the authors’ calibrated value, and extract the time

series of the filtered SDF and its components. We compare the filtered SDF (m (θ, t)ψ∗t )

with the model-implied SDF (m (θ, t)ψmt ) for each model.

Table I presents the results at quarterly frequency. Panel A presents the results when

the model-implied SDF and its components are obtained by extracting the state variable(s)

from the consumption data. Panel B presents the results when extracting the state vari-

able(s) from the asset market data. The first column presents the correlation between the

filtered time series {lnψ∗t }
T
t=1 of the missing component of the SDF and the correspond-

ing model-implied time series, {lnψmt }
T
t=1. The second column shows the correlation be-

tween the filtered SDF, {lnM∗t = ln (m (θ, t)ψ∗t )}
T
t=1, where m (θ, t) = (Ct/Ct−1)−γ , and the

model-implied SDF, {lnMm
t = ln (m (θ, t)ψmt )}Tt=1. The 95% confidence intervals for these
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correlations, reported in square brackets, are obtained by bootstrapping with replacement

from the data.

Consider first the results for the CC external habit model that are presented in the first

row of each panel. For this model, the utility curvature parameter is set to the calibrated

value of γ = 2. Panel A, column 1 shows that when the model-implied state variable

is extracted from the consumption data, the correlation between the filtered and model-

implied ψ is only .10 when ψ∗ is estimated using Equation (6). Column 2 shows that the

correlation between the filtered and model-implied SDFs is marginally higher at .13. When

ψ∗ is estimated using Equation (4), the correlations are very similar: .07 and .09. Panel

B shows that the correlations between the filtered and model-implied SDFs and ψs remain

small when the model state variable is extracted from the market-wide price–dividend ratio.

Table I: Correlation of Filtered and Model SDFs, 1947:Q1–2009:Q4
Correlation of filtered

and model SDF
Cross-sectional R2

ρ (lnψ∗t , lnψ
m
t ) ρ (lnM∗t , lnM

m
t )

no
intercept

free
intercept

Panel A: State Variables Extracted From Consumption Data

CC .10
[−.09,.18]

/ .07
[−.11,.18]

.13
[−.07,.20]

/ .09
[−.09,.19]

−1.19
[−3.14,.02]

.002
[.00,.38]

MSV −.01
[−.07,.18]

/ .003
[−.09,.18]

.05
[−.07,.20]

/ .04
[−.09,.19]

−.79
[−2.72,.06]

.002
[.000,.37]

BY −.02
[−.14,.12]

/ .03
[−.11,.18]

.16
[−.03,.25]

/ .09
[−.12,.18]

−.71
[−2.83,.02]

.005
[.00,.35]

PST −.12
[−.24,.02]

/ −.14
[−.24,.03]

−.03
[−.16,.09]

/ −.04
[−.21,.09]

−.91
[−3.21,.14]

.03
[.00,.36]

Panel B: State Variables Extracted From Asset Prices

CC .17
[−.10,.18]

/ .16
[−.10,.18]

.18
[−.10,.18]

/ .17
[−.10,.19]

−.77
[−3.13,.08]

.31
[.00,.39]

MSV .18
[−.10,.19]

/ .23
[−.10,.22]

.19
[−.10,.20]

/ .24
[−.10,.22]

−.46
[−3.78,.00]

.04
[.00,.48]

BY .03
[−.11,.17]

/ .06
[−.11,.21]

.04
[−.11,.17]

/ .07
[−.10,.21]

−1.26
[−3.23,−.39]

.24
[.00,.52]

Correlation between the filtered and the model-implied ψ-components of the SDFs (column 1), the correlation

between the filtered and the model-implied SDFs (column 2), the cross-sectional R2 implied by the model-

specific SDFs when no intercept is allowed in the cross-sectional regression (column 3), and the cross-sectional

R2 when an intercept is allowed in the regression (column 4), using quarterly data 1947:Q1–2009:Q4. The

bootstrapped 95% confidence intervals are given in square brackets below. Each cell in columns 1 and 2

has two entries, indicating whether the filtered ψ∗-component and, therefore, the filtered SDF is estimated

using Equation (6), shown on the left, or Equation (4), shown on the right. Panel A presents results when

the models’ state variables and, therefore, the model-implied SDFs, are extracted from consumption data.

Panel B presents the results when the state variables are extracted from asset prices. The acronyms CC,

MSV, BY and PST, denote, respectively, the models of Campbell and Cochrane (1999), Menzly, Santos, and

Veronesi (2004), Bansal and Yaron (2004) and Piazzesi, Schneider, and Tuzel (2007).
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The second row in each panel presents the results for the MSV external habit model. In

this case, γ is set equal to 1, which is the calibrated value in the model. Row 2 in each panel

shows that the results for the MSV model are similar to those for the CC model. When ψ∗

is estimated using Equation (6), the correlations between the filtered and model-implied ψ

components of the SDFs are small, varying from −.01 when the surplus consumption ratio

is extracted from the consumption data, to .18 when the state variable is extracted using

the price–dividend ratio. The correlations between the filtered and model-implied SDFs are

marginally higher, varying from .05 when the surplus consumption ratio is extracted from

the consumption data, to .19 when it is extracted using the price–dividend ratio. Similar

results are obtained when ψ∗ is estimated using Equation (4).

Table II: Correlation of Filtered and Model SDFs, 1929–2009
Correlation of filtered

and model SDF
Cross-sectional R2

ρ (lnψ∗t , lnψ
m
t ) ρ (lnM∗t , lnM

m
t )

no
intercept

free
intercept

Panel A: State Variables Extracted From Consumption Data

CC .35
[−.04,.44]

/ .31
[−.04,.41]

.39
[−.00,.48]

/ .34
[−.02,.92]

.082
[−2.19,.74]

.504
[.00,.81]

MSV .33
[−.02,.41]

/ .22
[−.04,.37]

.41
[.06,.46]

/ .34
[−.02,.96]

.76
[−2.05,.76]

.82
[.00,.80]

BY −.17
[−.31,.22]

/ −.028
[−.44,.21]

.27
[−.03,.48]

/ .20
[−.16,.77]

.45
[−2.25,.75]

.47
[.00,.80]

PST −.09
[−.23,.24]

/ −.001
[−.25,.25]

−.004
[−.20,.21]

/ −.013
[−.26,.26]

−.73
[−2.39,.09]

.09
[.00,.40]

Panel B: State Variables Extracted From Asset Prices

CC .19
[−.12,.35]

/ .14
[−.10,.28]

.24
[−.11,.37]

/ .17
[−.08,.29]

−.20
[−2.86,.53]

.60
[.00,.63]

MSV −.04
[−.10,.33]

/ .13
[−.10,.27]

.01
[−.08,.35]

/ .18
[−.09,.28]

−.16
[−2.69,.27]

.001
[.00,.52]

BY −.01
[−.21,.34]

/ .10
[−.23,.31]

−.02
[−.21,.29]

/ .09
[−.29,.32]

−.15
[−.77,.25]

.005
[.00,.27]

Correlation between the filtered and the model-implied ψ-components of the SDFs (column 1), the correlation

between the filtered and the model-implied SDFs (column 2), the cross-sectional R2 implied by the model-

specific SDFs when no intercept is allowed in the cross-sectional regression (column 3), and the cross-sectional

R2 when an intercept is allowed in the regression (column 4), using annual data 1929–2009. The bootstrapped

95% confidence intervals are shown in square brackets below. Each cell in columns 1 and 2 has two entries,

indicating whether the filtered ψ∗-component and, therefore, the filtered SDF is estimated using Equation (6),

shown on the left, or Equation (4), shown on the right. Panel A presents the results when the models’ state

variables and, therefore, the model-implied SDFs, are extracted from consumption data. Panel B presents

the same when the state variables are extracted from asset prices. Other notation as in Table I.

The third row in each panel presents the results for the BY long run risks model. The

parameter γ is set equal to the BY calibrated value of 10. Row 3, Panel A, column 1 shows

that when the state variables are extracted from the consumption data, the correlation
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between the filtered and model-implied ψ components is −.02 (.03) when ψ∗ is estimated

using Equation (6) (Equation (4)). Column 2 shows that the correlation between the filtered

and model-implied SDFs is .16 (.09). Similar results are shown in Panel B, where the state

variables are extracted from the market-wide price–dividend ratio.

Table II presents results analogous to those in Table I, but at an annual frequency. The

results are largely similar to those in Table I. Notable exceptions are the two habit models

when the state variable is extracted from the consumption data. In this case the correlations

between filtered and model implied SDFs and ψ components are much higher than at the

quarterly frequency, being in the .31–.39 range for CC and .22–.41 for MSV.

The last two columns of Tables I and II show the cross-sectional R2s, along with 95%

confidence bands, in square brackets below, implied by the model-specific SDFs. The cross-

sectional R2 is obtained by performing a cross-sectional regression of the historical average

returns on the model-implied expected returns. Column 3 presents the cross-sectional R2

when there is no intercept in the regression while column 4 presents the results when an

intercept is included. The results reveal that the cross-sectional R2s vary wildly for the

same model, and often have large negative values when an intercept is not allowed in the

cross-sectional regression, or when the model-implied state variables are extracted using

either the consumption or the asset market data. Moreover, they have very wide confidence

intervals. As we show in the next sub-section, this is in stark contrast with the results based

on entropy bounds in Tables VI and VII, that tend instead to give consistent results and

tighter confidence bands for each model across different samples and procedures used to

extract the model state variables.

Overall, Tables I and II make two main points. First, they demonstrate the robustness

of our estimation methodology—very similar results are obtained using either Equation (6)

or (4) to filter ψ∗and M∗. Second, they show that, regardless of the data frequency and the

procedure used to extract the model-implied SDFs, all the asset pricing models considered

yield SDFs that tend to have low correlations with the filtered SDF—the most likely SDF

given the data. While the results in Tables I and II are obtained using the combined set of

size and book-to-market-equity sorted, momentum-sorted, and industry-sorted portfolios,

very similar results are obtained using the 25 Fama–French portfolios as test assets.15

15The results are available from the authors upon request.
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The correlations between the model specific SDFs and the filtered SDFs discussed above

would have little significance if the filtered discount factors had no clear economic inter-

pretation. In order to address this concern, we show below that our filtered pricing kernel

has clear economic content since a) it is always highly correlated with the Fama–French

factors (that can be interpreted as proxies for the true unknown sources of systematic risk),

b) it implies that the most likely SDF should have a strong business cycle pattern, and c)

it reacts significantly to financial market crashes.

Tables III and IV show the correlations between the filtered and model-implied log SDFs

and the three Fama–French (FF) factors at quarterly and annual frequencies, respectively.

Column 1 presents the correlation between the model-implied SDF when the state variables

are extracted from the consumption data, and the three FF factors. This is computed by

performing a linear regression of the model-implied time series of the SDF, {ln (Mm
t )}Tt=1,

on the three FF factors and computing the correlation between ln (Mm) and the fitted

value from the regression. Column 2 presents the correlation when the model-implied state

variables are extracted from asset market data. Columns 3 and 4 present, respectively, the

correlations of the filtered SDF and its missing component with the three FF factors.

Consider first Table III. Panel A, column 3 shows that the log of the filtered SDF,

M∗t ≡ m (θ, t)ψ∗t , correlates strongly with the FF factors, having correlation coefficients

ranging from .49 to .59 when the set of test assets consists of the 25 size and book-to-market-

equity sorted portfolios of Fama–French. Column 4 reveals that this high correlation is due

almost entirely to the ψ∗ component, and not m (θ, t), since the correlation between the

filtered SDF and the FF factors is the same as that between the filtered missing component

of the SDF and the FF factors.

The above results are perhaps not surprising because the FF factors are known to be

quite successful at explaining a large fraction of the cross-sectional variation in returns of

the 25 size and book-to-market-equity sorted portfolios. However, Panels B and C show

that the filtered SDF correlates strongly with the FF factors independently of the set of

test assets used to extract the filtered SDF. When the set of test assets consists of the 10

momentum-sorted portfolios, the correlations vary from .51 to .55. For the 10 industry-

sorted portfolios, the correlations vary from .53 to .69. Column 4 of Panels B and C reveals

that this high correlation is almost entirely driven by the missing component of the SDF
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Table III: Correlations with FF3, 1947:Q1–2009:Q4
(lnMm

t )cons (lnMm
t )prices lnM∗t lnψ∗t

Panel A: 25 Fama–French

CC .18 .20 .54/.59 .54/.59
MSV .21 .95 .54/.59 .54/.59
BY .25 .45 .54/.58 .52/.57
PST .07 − .49/.52 .45/.50

Panel B: 10 Momentum

CC .18 .20 .52/.52 .51/.51
MSV .21 .95 .52/.52 .51/.51
BY .25 .45 .55/.53 .50/.50
PST .07 - .53/.51 .43/.43

Panel C: 10 Industry

CC .18 .20 .65/.69 .64/.68
MSV .21 .95 .65/.69 .65/.68
BY .25 .45 .66/.69 .62/.65
PST .07 - .53/.55 .47/.51

Correlations between the 3 Fama–French factors and i) the model-implied SDF with state variables extracted

from consumption (column 1) and stock market (column 2) data, ii) the filtered SDF (column 3), and iii)

the filtered ψ∗ component of the SDF (column 4), using quarterly data 1947:Q1–2009:Q4 and a different

set of portfolios in each panel. Each cell in columns 3 and 4 has two entries, indicating whether the fil-

tered ψ∗-component and, therefore, the filtered SDF is estimated using Equation (6), shown on the left, or

Equation (4), shown on the right. Other notation as in Table I.

and not the consumption growth component.

Row 1, column 1 of each panel shows that, for the CC model, while the filtered SDF

correlates strongly with the FF factors, the model-implied SDF has a small correlation

coefficient of .18 when the surplus consumption ratio is extracted from the consumption

data. Row 1, column 2 shows that the correlation rises only marginally to .20 when the

state variable is extracted from the market-wide price–dividend ratio.

For the MSV model, the correlation between the model-implied SDF and the FF factors

is small, at .21, when the surplus consumption ratio is extracted from the consumption data.

However, when the state variable is extracted from the price–dividend ratio, the correlation

between the model-implied SDF and the FF factors is very high: .95—much higher than

the correlation between the filtered SDF and the FF factors for each set of test assets.

Row 3 in each panel shows that for the BY model, the correlation between the model-

implied SDF and the FF factors is .25 when the state variables are extracted from the

consumption data. The correlation increases to .45 when the asset price data are used in

the extraction of the model-implied state variables.
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Table IV: Correlations with FF3, 1929–2009
(lnMm

t )cons (lnMm
t )prices lnM∗t lnψ∗t

Panel A: 6 Fama–French

CC .19 .12 .73/.78 .72/.77
MSV .26 .87 .73/.78 .72/.77
BY .38 .73 .77/.77 .68/.72
PST .35 − .81/.76 .65/.67

Panel B: 10 Momentum

CC .19 .12 .55/.63 .58/.61
MSV .26 .87 .55/.62 .57/.61
BY .38 .73 .69/.69 .51/.57
PST .35 - .73/.70 .50/.55

Panel C: 10 Industry

CC .19 .12 .49/.53 .49/.53
MSV .26 .87 .50/.54 .50/.55
BY .38 .73 .42/.39 .38/.42
PST .35 - .41/.27 .34/.37

Correlations between the 3 Fama–French factors and i) the model-implied SDF with state variables extracted

from consumption (column 1) and stock market (column 2) data, ii) the filtered SDF (column 3), and iii) the

filtered ψ∗ component of the SDF (column 4), using annual data 1929–2009 and a different set of portfolios

in each panel. Each cell in columns 3 and 4 has two entries, indicating whether the filtered ψ∗-component

and, therefore, the filtered SDF is estimated using Equation (6), shown on the left, or Equation (4), shown

on the right. Other notation as in Table I.

Finally, row 4 in each panel shows that for the PST model, the correlation between the

model-implied SDF and the FF factors is very small: .07.

Table IV shows that very similar results are obtained at an annual frequency. Tables III

and IV demonstrate the soundness of our estimation methodology: the filtered time series

of the SDF and its ψ∗ component are quite robust, in terms of their correlations with the

FF factors, to the choice of the utility curvature parameter γ, the set of assets, and the data

frequency considered. Moreover, our filtered SDF and ψ∗ are consistently highly correlated

with the FF factors independently of the sample frequency and the cross-section of assets

used for the estimation (even assets, such as the industry and momentum portfolios, that

are not well priced by the FF factors). This finding has several important implications.

First, it suggests that our estimation approach successfully identifies the unobserved pricing

kernel, since there is substantial empirical evidence that the FF factors do proxy for asset

risk sources. Second, our finding provides a rationalization of the empirical success of the FF

factors in pricing asset returns. Finally, although the filtered SDF is highly correlated with

the FF factors, the correlation coefficient is substantially smaller than unity, particularly
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for the industry and momentum portfolios (see, e.g., Table IV), suggesting that the FF

factors cannot fully capture all the underlying sources of systematic risk that are important

in pricing these assets.

The reason behind the stable correlation results between our filtered SDFs and the three

Fama French factors seems to be the fact that, independently of the set of assets used for the

filtering, the most likely SDF tends to have a very similar time series behavior. In particular,

it shows a clear business cycle pattern, and significant and sharp reactions to stock market

crashes (even if these crashes do not necessarily result in economy-wide contractions). This

feature of the filtered SDFs is illustrated in Figure 9 (annual frequency) and Figure 10

(quarterly frequency). In each figure we show the business cycle component (Panel A)

and the residual component (Panel B) of the filtered M∗ for the different models.16 At

both data frequencies, independently of the model considered, both the business cycle and

residual components are extremely similar across the models.

In Table V we compare the business cycle and market crash properties of the filtered

SDFs with the model-implied ones. For each model considered, and for both the filtered

(M∗) and model-implied (Mm) pricing kernels, the table presents the risk neutral proba-

bilities of recessions (column 1), and stock market crashes non-concomitant with recessions

(column 2) as well as, in the first row of each panel, the sample frequency of these events.17

For the model-implied pricing kernels, we present the probabilities when the state variables

are extracted using the consumption data as well as using the asset price data (in brackets

below).

Focusing on quarterly data (Panel A), column 1 shows that the filtered SDFs (M∗)

imply a risk neutral probability of a recession in the 25%–26% range. Comparing this with

the model-implied probabilities shows that whether the state variables are extracted using

the consumption or the asset market data, all the model-implied pricing kernels deliver a

similar risk neutral probability of recessions, one that is similar to that of our filtered SDFs

16The decomposition into a business cycle and a residual component is obtained by applying the Hodrick
and Prescott (1997) filter to the estimated M∗.

17To compute the risk neutral probabilities, note that for any quantity At and function f (.), we have that
EQ [f (At)] =

∫
f (At)

dQ
dP
dP =

∫
f (At)

Mt
M̄
dP. Hence, given an SDF Mt (either filtered or model-implied)

the risk neutral expectation can be estimated (assuming ergodicity) using the sample analog ̂EQ [f (At)] =
1
T

∑T
t f (At)

Mt
M̄

. For instance, to estimate the probability of a recession, we replace f (At) with an index
function that takes the value 1 if the economy was in an NBER-designated recession at time t and zero
otherwise. See also Remark 1 in Appendix A.1.
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Panel A: Business Cycle components of M*

Time
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Panel B: Residual components of M*

Time

1940 1960 1980 2000

-2
-1

0
1

2

BY
CC
MSV
PST

Figure 9: Business cycle (Panel A) and residual (Panel B) components of the most likely (log) SDF

(M∗t = (Ct/Ct−1)−γ ψ∗t ) filtered using Equation (6), annual data 1929–2009, 6 size and book-to-market-

equity portfolios, 10 industry portfolios, and the first and last decile of 10 momentum portfolios, for the

different models considered: Bansal and Yaron (2004) (BY), Campbell and Cochrane (1999) (CC), Menzly,

Santos, and Veronesi (2004) (MSV), and Piazzesi, Schneider, and Tuzel (2007) (PST). The difference between

the models is driven by the value of the utility curvature parameter γ that is set to the authors’ original

calibrations. Decomposition into business cycle and residual component obtained applying the Hodrick and

Prescott (1997) filter to M∗. Shaded areas denote NBER recession years, and vertical dashed lines indicate

the major stock market crashes identified by Mishkin and White (2002).
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Panel A: Business Cycle components of M*

Time
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Panel B: Residual components of M*
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Figure 10: Business cycle (Panel A) and residual (Panel B) components of the most likely (log) SDF

(M∗t = (Ct/Ct−1)−γ ψ∗t ) filtered using Equation (6), quarterly data 1947:Q1–2009:Q4, 6 size and book-to-

market-equity portfolios, 10 industry portfolios, and 10 momentum portfolios, for the same models as in

Figure 9. The difference between the models is driven by the value of the utility curvature parameter γ

that is set to the authors’ original calibrations. Decomposition into business cycle and residual component

obtained applying the Hodrick and Prescott (1997) filter to M∗. Shaded areas denote NBER recession years,

and vertical dashed lines indicate the major stock market crashes identified by Mishkin and White (2002).
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Table V: Recession and Market Crash Probabilities of Mm and M∗

Recession
Probability

Market Crash
without Recession

Probability

Panel A: Quarterly Data, 1947:Q1–2009:Q4

Sample .22 .024
CC Mm .25 [.24] .024 [.025]

M∗ .25/.25 .054/.059
BY Mm .22 [.55] .024 [.034]

M∗ .26/.26 .049/.057
MSV Mm .22 [.22] .024 [.028]

M∗ .25/.25 .055/.059
PST Mm .21 .028

M∗ .25/.25 .086/.065

Panel B: Annual Data, 1929–2009

Sample .375 .088
CC Mm .61 [.49] .055 [.068]

M∗ .58/.56 .092/.119
BY Mm .41 [.59] .083 [.227]

M∗ .59/.59 .085/.097
MSV Mm .38 [.39] .086 [.098]

M∗ .57/.56 .094/.122
PST Mm .37 .067

M∗ .60/.60 .103/.093

Risk-neutral probability of recessions (column 1) and stock market crashes non-concomitant with recessions

(column 2) implied by the model (Mm) and filtered (M∗) SDFs at quarterly (Panel A) and annual (Panel B)

frequencies. Each cell in the rows corresponding to the model SDF has two entries, indicating whether the

models’ state variables are extracted from the consumption data, shown on the left, or from the asset market

data, shown on the right. Each cell in the rows corresponding to the filtered SDF has two entries, indicating

whether the filtered ψ∗-component and, therefore, the filtered SDF is estimated using Equation (6), shown

on the left, or Equation (4), shown on the right. Other notation as in Table I.

(with the notable exception of the BY pricing kernel that, extracting the state variables

using asset market data, implies a risk neutral probability of recession of about 55%). More

interestingly, column 2 shows that the model-implied kernels fail to show the significant

and sharp reaction to stock market crashes exhibited by the filtered SDFs: the probabilities

of stock market crashes non-concomitant with recessions implied by the filtered SDFs are

between 104% and 207% higher than those implied by the model specific kernels when the

model-implied state variables are extracted from the consumption data, and between 44%

and 207% higher when the state variables are extracted from the asset price data. Panel B

presents similar findings for the annual data, but also shows that MSV and PST imply too

low probablities of recessions and BY—only when extracted from the asset prices—implies

44



a very high probability of a market crash18

Overall, the above results suggest that the explanatory power of these models for asset

pricing would be improved by augmenting the pricing kernels with a component that exhibits

sharp reactions to market crashes that are not perfectly correlated with the business cycle.

IV.2.2 Entropy Bounds Analysis

Our second approach to assessing the empirical plausibility of the asset pricing models

considered relies on the entropy bounds derived in Section II.1. For each model we compute

the minimum values of the power coefficient, γ, at which the model-implied SDF satisfies the

HJ, Q, M , and Ψ bounds. We also compute the 95% confidence bands via bootstrapping.

Table VI presents the results for the quarterly data. Panels A and B show the results

when the state variables needed to construct the time series of the model-implied SDF and

its components are extracted from the consumption (Panel A) and the asset market data

(Panel B). Consider first the results for the HJ, Q1, M1, and Ψ1 bounds. The first row in

each panel presents the bounds for the CC model. Panel A shows that when the surplus

consumption ratio is extracted from the consumption data, the minimum values of γ at

which the pricing kernel satisfies the HJ, Q1, M1, and Ψ1 bounds are 10.2, 16.1, 16.4, and

23.2, respectively. Therefore, as suggested by the theoretical predictions, the Q bound is

tighter than the HJ bound, and the M bound is tighter than the Q bound. Note that in

this model, the curvature of the utility function is γ
St

, where St is the surplus consumption

ratio, and this ratio is almost identical to the coefficient of relative risk aversion (see, e.g.,

the discussion in Campbell and Cochrane (1999)). For γ = 2, the calibrated value in

CC, the curvature varies over [19.7,∞). Panel A shows that the Q bound is satisfied for

γ > 16.1, implying that the curvature varies over [56.6,∞), the M bound is satisfied for

γ > 16.4, implying that the curvature varies over [57.2,∞), and the Ψ bound is satisfied

for γ > 23.2, implying that the curvature varies over [68.5,∞). A similar ordering of the

bounds is obtained when the surplus consumption ratio is extracted from the market-wide

price–dividend ratio in Panel B except that, in this case, even higher values of risk aversion

are needed in order to satisfy the bounds. Also, very similar results are obtained for the

Q2, M2, and Ψ2 bounds, stressing the robustness of our approach.

18Note that, at an annual frequency, a year is designated as a recession year if at least one of its quarters
is in an NBER recession period.
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Table VI: Bounds for RRA, Quarterly Data, 1947:Q1–2009:Q4
HJ Bound Q1/Q2 Bounds M1/M2 Bounds Ψ1/Ψ2 Bounds

Panel A: State Variables Extracted From Consumption Data

CC 10.2 16.1
[16.0,38.0]

/ 15.7
[14.4,34.8]

16.4
[16.0,38.0]

/ 16.0
[14.6,36.8]

23.2
[23.0,>100]

/ 23.9
[21.2,>100]

MSV 32.6 40.8
[38.0,62.0]

/ 40.4
[38.0,59.0]

43.4
[40.0,64.0]

/ 43.5
[40.0,64.0]

61.3
[59,113]

/ 62.8
[59.0,>100]

BY > 100 > 100
[>100,>100]

/ > 100
[>100,>100]

> 100
[>100,>100]

/ > 100
[>100,>100]

> 100
[>100,>100]

/ > 100
[>100,>100]

PST 73.8 99.0
[96.0,172.0]

/ 92.6
[88.0,161.0]

111.1
[102.0,183.0]

/ 102.2
[93.0,172,1]

96.2
[94.0,187.0]

/ 90.5
[86.0,176.0]

Panel B: State Variables Extracted From Asset Prices

CC 19 43
[43.0,50.0]

/ 46
[46.0,49.0]

46
[46.0,50.0]

/ 46
[46.0,49.0]

47
[47.0,51.0]

/ 48
[48.0,50.0]

MSV 73.3 90.3
[92.0,>100]

/ 90.0
[89.5,>100]

> 100
[>100,>100]

/ > 100
[>100,>100]

> 100
[>100,>100]

/ > 100
[>100,>100]

BY 4.0 5
[5.0,6.0]

/ 5
[5.0,6.0]

5
[5.0,6.0]

/ 5
[5.0,6.0]

5
[5.0,6.0]

/ 5
[5.0,6.0]

Minimum values of the utility curvature parameter γ at which the model-implied SDF satisfies the HJ

(column 1), Q (column 2), M (column 3), and Ψ (column 4) bounds using quarterly data 1947:Q1–2009:Q4.

The bootstrapped 95% confidence intervals are shown in square brackets below. Columns 2–4 have two

entries in each cell, which indicate whether the filtered ψ∗-component of the SDF and, therefore, the filtered

SDF are estimated using Equation (6), shown on the left, or Equation (4), shown on the right. Panels A

and B present the results when the models’ state variables are extracted from the consumption data and the

asset market data, respectively. Other notation as in Table I.

The second row in each panel presents the bounds for the MSV model. When the

surplus consumption ratio is extracted from the consumption data, the HJ, Q1, M1, and

Ψ1 bounds are satisfied for a minimum value of γ = 32.6, 40.8, 43.4, and 61.3, respectively.

Very similar results are obtained for the Q2, M2, and Ψ2 bounds. Therefore, this model

requires much higher values of risk aversion than CC to be consistent with the observed

asset returns. Note, however, that for both models and both procedures used to extract the

model-implied SDFs, the risk aversion coefficients at which the models satisfy the bounds

are very high.

The third row in each panel presents the bounds for the BY model. Panel A shows

that when the model-implied state variables are extracted from the consumption data, the

model-implied pricing kernel fails to satisfy the HJ, Q, M , and Ψ bounds for any value of

the risk aversion parameter smaller than 100. On the other hand, when the model-implied

state variables are extracted from the asset market data (Panel B), the HJ bound is satisfied

for a minimum value of γ = 4.0 while the Q1, M1, and Ψ1 bounds are all satisfied by a

relative risk aversion as small as 5. Similar results are obtained for the Q2, M2, and Ψ2

bounds. Therefore, the results show that the empirical performance of the BY framework
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crucially depends on how the latent state variables are extracted from the data.

Finally, the fourth row of Panel A presents the bounds for the PST model. Note that,

in this model, the SDF is a function of the observable data alone, hence there is no need

to extract any state variable from the asset market data. Therefore, we do not have a

fourth row in Panel B. The model satisfies the HJ, Q1 (Q2), M1 (M2), and Ψ1 (Ψ2) bounds

for minimum values of γ = 73.8, 99.0 (92.6), 111.1 (102.2), and 96.2 (90.5), respectively.

Therefore, this model requires very high levels of risk aversion to be consistent with observed

asset returns.

Overall, Table VI demonstrates that, in line with the theoretical underpinnings of the

various bounds, the Q bound is tighter than the HJ bound because it naturally exploits

the restriction that the SDF is a strictly positive random variable. The M bound is tighter

than the Q bound because it formally takes into account the ability of the SDF to price

assets and the dependency of the pricing kernel on consumption. Furthermore, the results

suggest that all the models considered require very high levels of risk aversion to satisfy the

bounds, with the only exception being the long run risks model of BY (but only when the

model state variables are extracted from the asset price data).

Table VII: Bounds for RRA, Annual Data, 1929–2009
HJ Bound Q1/Q2 Bounds M1/M2 Bounds Ψ1/Ψ2 Bounds

Panel A: State Variables Extracted From Consumption Data

CC .7 5.1
[4.0,41.0]

/ 2.7
[3.0,8.0]

5.2
[4.0,41.0]

/ 2.7
[3.0,8.0]

7.6
[5.0,>100]

/ 3.6
[4.0,23.2]

MSV 17 28.7
[19.0,53.3]

/ 24.4
[23.7,35.0]

30.3
[20.0,53.3]

/ 26.6
[24.7,35.4]

> 100
[>100,>100]

/ 76.5
[81.0,>100]

BY 50 53
[22.0,71.0]

/ 71
[69.7,>80]

60
[24.0,72.0]

/ > 80
[>80,>80]

55
[49.0,>80]

/ > 80
[2.0,>80]

PST 17.1 28.6
[19.0,51.7]

/ 24.1
[23.0,35.4]

31.4
[20.0,51.3]

/ 27.0
[24.0,35.4]

22.0
[14.0,42.7]

/ 18.6
[19.7,29.0]

Panel B: State Variables Extracted From Asset Prices

CC 4 7
[4.0,12.0]

/ 6
[6.0,9.0]

7
[4.0,12.0]

/ 6
[6.0,9.0]

8
[4.0,14.0]

/ 7
[7.0,11.0]

MSV 23.7 39.1
[22.0,69.5]

/ 33.4
[29.5,45.0]

42.2
[26.0,69.5]

/ 37.0
[30.5,45.0]

> 100
[>100,>100]

/ > 100
[>100,>100]

BY 5 6
[5.0,6.0]

/ 6
[2.0,7.0]

6
[5.0,6.0]

/ 6
[2.0,6.0]

6
[5.0,6.0]

/ 6
[2.0,6.0]

Minimum values of the utility curvature parameter γ at which the model-implied SDF satisfies the HJ

(column 1), Q (column 2), M (column 3), and Ψ (column 4) bounds using annual data 1929–2009. The

bootstrapped 95% confidence intervals are shown in square brackets below. Columns 2–4 have two entries

in each cell, which indicate whether the filtered ψ∗-component of the SDF and, therefore, the filtered SDF

are estimated using Equation (6), shown on the left, or Equation (4), shown on the right. Panels A and

B present results when the models’ state variables are extracted from consumption data and asset market

data, respectively. Other notation as in Table I.
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Table VII presents analogous bounds to those in Table VI for the annual data. The

table shows that, at this frequency, all the bounds tend to be satisfied with smaller values

of the utility curvature parameter, suggesting that the models considered can more easily

rationalize asset pricing dynamics at the annual, rather than quarterly, level. However, once

again in line with the theoretical predictions, the Q bound is tighter than the HJ bound,

and the M bound is tighter than the Q bound.

Note that the above results on the bounds have tight confidence bands and are much

more consistent in evaluating the plausibility of a given model across the different procedures

used to extract the model-implied SDF and its components, than the cross-sectional R2

measures shown in Tables I and II, which vary wildly for the same model and have very

wide confidence intervals.

The results in Tables VI and VII are obtained by allowing only the utility curvature

parameter, γ, to vary while holding constant all the other model parameters at the authors’

calibrated values. Note that most consumption based asset pricing models, including the

ones considered in this paper, are highly parametrized. Since the state variables are not

directly observed in many of the models, the parameters governing their dynamics are

typically chosen to match some of the moments of the data. Consequently, the properties

of the SDF are quite sensitive to not only γ but also the values of all the other parameters.

Therefore, we also compute the minimum values of the power coefficient, γ, at which the

model-implied SDFs satisfy the HJ, Q, M , and Ψ bounds while allowing the remaining

model parameters to simultaneously vary over intervals two standard errors around their

calibrated values. The results, shown in Table A2 of Appendix A.7.1, remain qualitatively

unchanged. In particular, for each model, the HJ, Q, M , and Ψ bounds are satisfied for

smaller values of γ when the other parameters are allowed to vary simultaneously compared

to Tables VI and VII where the other parameters are held fixed. However, as in the latter

tables, the CC, MSV, and PST models still require much larger values of risk aversion to

satisfy the bounds compared to the authors’ calibrated values.

Also note that we have used excess returns (in excess of the risk free rate) on a broad

cross-section of risky assets to extract the most likely SDF and obtain entropy bounds on

the SDF and its components. However, it is well known that the level of the risk free asset

constrains models quite dramatically. Therefore, in order to check the robustness of our
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results, we repeated the empirical exercise, using as test assets the gross returns (instead of

excess returns) on the same assets considered so far plus the risk free asset. The methodology

needs to be slightly modified in this case and is described in Appendix A.7.2. The results,

shown in Table A3 of Appendix A.7.2, show that the inclusion of the risk free rate as an

additional asset leaves the HJ, Q, M , and Ψ bounds on the SDF and its components very

similar to those obtained in Tables VI and VII without the risk free rate, for all the models

considered.

IV.2.3 What Are The Consumption-Based Models Missing?

As shown in Section II.1.1, modelling the SDF as being fully observable, i.e., setting

m (θ, t) = Mm
t where Mm

t is the entire pricing kernel of the model under consideration

(given in Equations (21), (24) and (25)), we can extract a residual ψresid component such

that M∗t := Mm
t × ψresidt prices assets correctly. The ψresid component can once again be

estimated using the relative entropy minimization procedures in Equations (6) and (4) re-

placing m with Mm. The ψresid multiplicative adjustment of the pricing kernel: a) still has

a maximum likelihood interpretation; b) adds the minimum amount of information needed

for M∗ to be able to price assets correctly; and c) most importantly, as the second Hansen–

Jagannathan distance, it provides a useful diagnostic for detecting what the pricing kernels

are missing in order to be consistent with the observed asset returns.

We first examine the relative importance of the two components of M∗, Mm and ψresid

in pricing a broad cross-section of assets. We do this by computing the contribution of each

component to the overall entropy of the pricing kernel. The results are shown in Table VIII.

Columns 1 and 2 present the relative entropy, or KLIC, of the model-implied SDF, Mm
t ,

and the residual component, ψresidt , respectively. Column 3 presents the KLIC of ψresidt as

a fraction of the KLIC of the overall filtered kernel Mm
t × ψresidt .

Each row of column 1 presents the KLIC, or relative entropy, of Mm
t . There are four

numbers for this quantity since there are two possible ways of computing the KLIC (as

D (P ||Mm), shown on the left, and D (Mm||P ), shown on the right), and two possible ways

of extracting the models’ state variables (from the consumption data, top numbers, and

from the asset market data, bottom numbers in square brackets). Similarly, four numbers

with the same ordering are shown in the remaining two columns. Consider first Panel A,
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Table VIII: Relative Entropy of SDF and Its Components

KLIC (Mm
t ) KLIC

(
ψresidt

) KLIC(ψresidt )
KLIC(Mm

t ψ
resid
t )

Panel A: Quarterly, 1947:Q1–2009:Q4

CC .035
[.018]

/.037
[.019]

.26
[.30]

/.32
[.33]

.772
[.909]

/.786
[.859]

MSV .0002
[.004]

/.0002
[.004]

.31
[.30]

/.36
[.35]

.992
[.950]

/.996
[.953]

BY .003
[1.69]

/.003
[1.70]

.30
[.59]

/.35
[.39]

.957
[.647]

/.971
[.448]

PST .008/.008 .39/.39 1.01/.989

Panel B: Annual, 1929–2009

CC .379
[.164]

/.660
[.169]

.66
[.76]

/.69
[.73]

.688
[.815]

/.676
[.767]

MSV .001
[.023]

/.001
[.023]

.85
[.85]

/.85
[.81]

.972
[.973]

/.974
[.906]

BY .023
[2.66]

/.022
[1.75]

.82
[2.33]

/ .84
[1.02]

.932
[1.44]

/.959
[.712]

PST .19/.27 .96/.91 1.06/.996

KLIC of the model-implied SDF (column 1), the KLIC of the residual psi (column 2), and the ratio of

the KLIC of the residual psi and the KLIC of the product of the model-implied SDF and the residual psi

(column 3) at the quarterly (Panel A) and annual (Panel B) levels. Each cell has four entries, which indicate

whether the models’ state variables are extracted from consumption data, shown at the top, or from asset

market data, shown at the bottom, and whether the KLIC between measure A and the physical measure P

is computed as D(P ||A), shown on the left, or as D(A||P ), shown on the right. Other notation as in Table I.

which presents the results obtained from the quarterly data. Columns 1 and 2 show that

for the CC model, the relative entropy of ψresid is an order of magnitude bigger than that

of Mm, regardless of whether ψresidt is estimated using Equation (6) or (4), or whether Mm
t

is obtained by extracting the state variable from the consumption or the asset market data.

This point is further highlighted in column 3, which shows that the KLIC of ψresidt accounts

for the lion’s share of the KLIC of the overall kernel: 77.2%–78.6% when the model-implied

state variable is extracted from the consumption data and 85.9%–90.9% when it is extracted

from the asset price data. Very similar results are obtained for the MSV, BY, and PST

models in rows 2–4, and also for the annual data in Panel B. Overall, the results suggest that

for each model considered, most of the ability of the kernel to price assets comes from the

residual component and very little from the model-implied component, i.e., all the pricing

kernels under consideration seem to miss a substantial share of the information needed to

price correctly the observed asset returns.

In order to assess whether these models are missing similar features of the data, Table

IX presents the correlations between the ψresid of different models at the quarterly (Panel

A) and annual (Panel B) frequencies. As in the previous table, for all the entries, we have
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four numbers given by the two ways of computing the relative entropy (the left and right

numbers corresponding to Equations (6) and (4)) and the two ways of extracting the models’

state variables (from the consumption data in the top numbers and from the asset prices

for the numbers below in square brackets). Panel A shows that when the models’ state

variables are extracted from the consumption data, the correlations between the residual

ψs are extremely high, varying from .85 (between CC and PST) to (almost) 1.0 (between

MSV and BY) when the ψresid component is estimated using Equation (6). When the ψresid

component is estimated using Equation (4), the correlations are very similar, varying from

.93 to (almost) 1.0. When the models’ state variables are extracted from the asset prices, the

correlations among the various ψresid are almost unchanged, with one important exception:

in this case, the correlation between the residual component of the BY model and all other

models becomes much smaller, ranging from .1 to .41. This implies that the BY pricing

kernel changes a lot, depending on whether its state variables are extracted from the market

data or the consumption data. Similar results were obtained for the annual data, shown in

Panel B, although the correlations are generally smaller at this frequency.19

Table IX: Correlation of Residual ψs
MSV BY PST

Panel A: Quarterly, 1947:Q1–2009:Q4

CC .96
[.96]

/.93
[.95]

.97
[.32]

/.96
[.10]

.85
[.93]

/.93
[.94]

MSV 1.0
[.41]

/1.0
[.20]

.91
[.89]

/.97
[.94]

BY .91
[.26]

/.97
[.10]

Panel B: Annual, 1929:2009

CC .87
[.91]

/.66
[.78]

.88
[.40]

/.77
[.22]

.80
[.83]

/.51
[.53]

MSV .99
[.52]

/.95
[.27]

.92
[.89]

/.71
[.62]

BY .88
[.38]

/ .62
[−.03]

Correlations between the residual ψs of the different asset pricing models using quarterly data 1947:Q1–

2009:Q4 (Panel A) and annual data 1929–2009 (Panel B). Each cell has four entries, which indicate whether

the models’ state variables are extracted from the consumption data, shown at the top, or from the asset

market data, shown at the bottom, and whether the residual psi is estimated using Equation (6), shown on

the left, or using Equation (4), shown on the right. Other notation as in Table I.

Figure 11 plots the time series of the residual ψs for the four models at the quarterly

(Panel A) and annual (Panel B) frequencies, with state variables extracted from the con-

19Note that the estimates from the annual data are inherently more imprecise, due to the small sample
size available, than those from the quarterly data.
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Panel A

Time

1950 1960 1970 1980 1990 2000 2010

-1
0

1
2

3

BY
CC
MSV
PST

Panel B

Time

1940 1960 1980 2000

-3
-2

-1
0

1
2

3

BY
CC
MSV
PST

Figure 11: The (log) residual ψ components, ln
(
ψresidt

)
, of the SDFs (M∗t = Mm

t ψ
resid
t ) filtered using

Equation (6). Quarterly data, 1947:Q1–2009:Q4, in Panel A, and annual data, 1929–2009, in Panel B, for

the same models as in Figure 9. Shaded areas denote NBER recession years, and vertical dashed lines

indicate the major stock market crashes identified by Mishkin and White (2002).

sumption data and ψresid estimated using Equation (6). The results suggest that these

models are all missing a very similar component that would improve their ability to explain

the asset return dynamics. In particular, all the ψresid have a clear business cycle pattern,

but also show significant and sharp reactions to financial market crashes that do not result

in economy-wide contractions.

To further illustrate this point, Table X presents the changes in the model-implied risk

neutral probabilities needed to rationalize the stock returns according to ψresid, that is, the

percentage change caused by replacing Mm with Mm × ψresid. As before, we have four

entries per model since we compute the probabilities when the state variables are extracted
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Table X: Change in Risk Neutral Probabilities due to Residual ψs

Recession
Probability

Market Crash
Probability

Market Crash
without Recession

Probability

Panel A: Quarterly Data, 1947:Q1–2009:Q4

CC 10/11
[9/14]

60/59
[78/78]

72/105
[133/144]

BY 14/15
[−65/−67]

69/68
[−31/−32]

107/136
[84/144]

MSV 15/15
[12/11]

78/74
[53/53]

124/144
[93/126]

PST 17/20 98/75 232/148

Panel B: Annual Data, 1929–2009

CC −1/− 1
[21/17]

−2/1
[73/85]

10/36
[11/81]

BY 42/37
[−22/−8]

84/86
[−45/43]

−2/37
[5/−24]

MSV 50/46
[43/39]

92/92
[61/63]

7/39
[3/33]

PST 58/57 64/71 −3/69

Percentage changes in risk neutral probabilities generated by the the residual ψ component. Recession

probabilities. Columns 1 to 3 focus on the probabilities of, respectively, recession, market crash, and market

crash without recession. Each cell has four entries, which indicate whether the models’ state variables are

extracted from consumption data, shown at the top, or from asset market data, shown at the bottom, and

whether the residual psi is estimated using Equation (6), shown on the left, or using Equation (4), shown on

the right. Other notation as in Table I.

using the consumption data as well as using the asset price data (in brackets below), and

using two minimum entropy methods (left and right numbers). Focusing on the quarterly

data in Panel A, three patterns emerge. First (column 1), ψresid implies a relatively small

increase in the risk neutral probability of recessions, suggesting that the models considered

tend to adequately capture business cycle risk at this frequency (with the exception of BY

when the state variables are extracted from the asset prices, which seems to imply too much

recession risk). Second (column 2), all the models seem to imply a too low risk neutral

probability of a market crash, i.e., ψresid increases this quantity by about 53%–98% (with

again the exception of BY, which seems to imply too much crash risk). Third (column 3),

all the models imply a much too low probability of market crashes not concomitant with

recessions: ψresid increases the risk neutral likelihood of these events by about 72%–232%.

Panel B shows a similar pattern, albeit the probability of market crashes without recessions

are harder to identify at this frequency. Overall, Table X suggests that the models do not

seem to price correctly the market crash risk, especially for market crashes that do not lead

to large real economic contractions.
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To summarize, the results in this section suggest that the consumption based asset

pricing models we have considered would benefit from being augmented with a component

that exhibits significant reactions to financial market crashes, in particular crashes that

do not result in macroeconomic contractions. Moreover, not only the standard C-CAPM

with power utility, but also most of the more recent models that have been proposed in the

literature, seem to be missing this component.

V Conclusion

In this paper, we propose an information-theoretic approach as a diagnostic tool for dynamic

asset pricing models. The models we consider are characterized by having a pricing kernel

that can be factorized into an observable component, consisting of a parametric function of

observable variables, and a potentially unobservable one that is model-specific.

Based on this decomposition of the pricing kernel, we provide three major contributions.

First, using a relative entropy minimization approach, we show how to non-parametrically

extract the time series of both the SDF and its unobservable component. Given the data, this

methodology identifies the most likely—in the information theoretic sense—time series of

the SDF and its unobservable component. Moreover, given a fully observable pricing kernel,

this procedure delivers the most likely modification of the SDF that would enable it to price

asset returns correctly. Applying this methodology to the data, we find that the estimated

SDF has a clear business cycle pattern, but also shows significant and sharp reactions to

financial market crashes that do not result in economy-wide contractions. Moreover, we find

that the non-parametrically extracted SDF, independently of the set of assets used for its

construction, is substantially (yet not perfectly) correlated with the risk factors proposed

in Fama and French (1993). This provides a rationalization of the empirical success of the

Fama French factors in pricing asset returns, and suggests that our filtering procedure does

successfully identify theSDF.

Second, we construct a new set of entropy bounds that build upon and improve the ones

suggested in the previous literature in that a) they naturally impose the non-negativity of

the pricing kernel, b) they are generally tighter and have higher information content, and c)

allow using jointly the information contained in consumption data and a large cross-section

of asset returns.
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Third, applying the methodology developed in this paper to a large class of dynamic asset

pricing models, we find that the SDFs implied by all of these models correlate poorly with

our filtered most likely SDF, require implausibly high levels of risk aversion to satisfy our

entropy bounds, and are all missing a similar component that exhibits significant reactions

to financial market crashes that do not result in economy-wide macroeconomic contractions

These results are robust to the choice of test assets used as well as the frequency of the

data.

The methodology developed in this paper is quite general, and may be applied to any

model that delivers well-defined Euler equations, such as models with heterogenous agents,

limited stock market participation, and biased beliefs.
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A Appendix

A.1 Maximum Likelihood Interpretation

To formally show the analogy between our estimation approach for the measures Ψ and Q
and an MLE procedure, we have to consider the two definitions of relative entropy (and
corresponding estimators) separately.

First, consider the entropy minimization problem of the type D (P ||x), with x being
either the Q or the Ψ measure, used to contruct the estimators in Equations (7) and (6).
Let the vector zt be a sufficient statistic for the state of the economy at time t. That is,
zt can be thought of as an augmented state vector (e.g., containing the beginning of period
state variables, as well as the time t realizations of the shocks and expectations about the
future). Given zt, the equilibrium quantities, such as returns Re and the SDF M , are just
a mapping from z on to the real line, i.e.,

M (z) : z→ R+, Re (z) : z→ RN , Mt ≡M (zt) , Re
t ≡ Re (zt)

where zt is the time t realization of z.
Equipped with the above definition, we can rewrite the Euler equation (3) as

0 = E [Re
tMt] ≡

∫
Re
tMtdP =

∫
Re (z)M (z) p (z) dz (26)

where p (z) is the pdf associated with the physical measure P . Moving to the risk neutral
measure we have

0 = E [Re
tMt] = EQ [Re

t ] =

∫
Re (z) q (z) dz (27)

where q (z) is the pdf associated with the risk neutral measure Q and M/M̄ = dQ/dP .
Note that

D (P ||Q) =

∫
ln
dP

dQ
dP =

∫
p (z) ln p (z) dz−

∫
p (z) ln q (z) dz.

Since the first term on the right hand side of the above expression does not involve q,
D (P ||Q) is minimized, with respect to q, by choosing the distribution that maximizes the
second term, i.e.,

Q∗ ≡ arg min
Q

D (P ||Q) ≡ arg max
q

E [ln q (z)] s.t. EQ [Re
t ] = 0.

That is, the minimum entropy estimator in Equation (7) maximizes the expected—risk
neutral—log likelihood. Note that ML with a risk neutral likelihood is not uncommon, for
instance in term structure modelling (see, e.g., Hamilton and Wu (2012)). Following Owen
(1988, 1991, 2001), approximating the continuous distribution q (z) with a multinomial
distribution {qt}Tt=1 that assigns probability weight qt to the time t realization of z, a non-
parametric maximum likelihood estimator (NPMLE) of Q can be obtained as

{q∗t }
T
t=1 = arg max

1

T

T∑
t=1

ln qt (28)

s.t. qt ∈ ∆T ≡

{
(q1, q2,..., qT ) : qt > 0,

T∑
t=1

qt = 1

}
and (27) holds,
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provided that

1

T

T∑
t=1

ln qt
p−→

T→∞
E [ln q (z)] .

Note also that the NPMLE of p(z) is simply pt = 1/T ∀t (see, e.g., Owen (1988, 1991,
2001)), i.e., the maximum entropy distribution. Therefore q∗ contains all the necessary
information to recover the state-price density from the Radon–Nikodym derivative dQ/dP .

Similarly, we have that

Ψ∗ ≡ arg min
Ψ

D (P ||Ψ) ≡ arg min
ψ

∫
p (z) ln p (z) dz−

∫
p (z) lnψ (z) dz

≡ arg max
ψ

E [lnψ (z)] s.t. EΨ [Re
tmt] = 0

where ψ (z) is the pdf associated with the measure Ψ. That is, the Ψ∗ estimator in Equation
(6) is also an MLE. Moreover, in a very similar fashion, one can show that ψ∗m provides a
MLE of q under the restriction that the pricing kernel has the multiplicative representation
M = mψ.

Hence, the estimates Q∗ and Ψ∗ maximize the log likelihoods of the data, but not the
physical ones: the risk neutral log likelihood in the first case and an intermediate one in the
second case (and Ψ∗ can also be interpreted as maximizing the risk-neutral log likelihood
under the constraint that Mt = mtψt).

Remark 1 The above implies that, for any equilibrium quantity At, we have that At ≡
A (zt). Hence, the risk neutral expectation of any function f (.) of A, defined as

EQ [f (At)] ≡
∫
f (A (z)) q (z) dz,

can be estimated by (see, e.g., Kitamura (2006))

̂EQ [f (At)] =

T∑
t=1

f (At) q
∗
t ,

where q∗t is the relative entropy minimizing risk neutral measure. For instance, the risk
neutral probability of a recession in a given year, i.e., EQ

[
1{rec. at t}

]
, where 1{rec. at t} is

an indicator function that takes the value one if year t was an NBER designated recession
and zero otherwise, can be estimated by

∑T
t=1 1{rec. at t}q

∗
t .

Second, consider the entropy minimization problem of the type D (x||P ) with x being
either the Q or the Ψ measure. This alternative definition of relative entropy in Equations
(5) and (4) also delivers non-parametric maximum likelihood estimates of the Q and Ψ
measures, respectively. We establish this result for Ψ∗ since for Q∗ the same result can be
shown by a simplified version of the same argument.

To see why the estimation problem in Equation (4) delivers an MLE of ψt, consider
the following procedure for constructing (up to scale) the series {ψt}Tt=1. First, given an
integer N >> 0, distribute to the various points in time t = 1, ..., T , at random and with
equal probabilities, the value 1/N in N independent draws. That is, draw a series of values

(probability weights)
{
ψ̃
}T
t=1

given by

ψ̃t ≡
nt
N

59



where nt measures the number of times that the value 1/N has been assigned to time t. Sec-

ond, check whether the drawn series
{
ψ̃
}T
t=1

satisfies the pricing restriction
∑T

t=1m (θ, t)Ret ψ̃t =

0. If it does, use this series as the estimator of {ψt}Tt=1, and if it doesn’t, draw another se-
ries. Obviously, a more efficient way of finding an estimate for ψt would be to choose the
most likely outcome of the above procedure. Noting that the distribution of the ψ̃t is, by
construction, a multinomial distribution with support given by the data sample, we have

that the likelihood of any particular sequence
{
ψ̃t

}T
t=1

is

L

({
ψ̃t

}T
t=1

)
=

N !

n1!n2!...nT !
× T−N =

N !

Nψ̃1!Nψ̃2!...Nψ̃T !
× T−N .

Therefore, the most likely value of
{
ψ̃t

}T
t=1

maximizes the log likelihood

lnL

({
ψ̃t

}T
t=1

)
∝

1

N

(
lnN !−

T∑
t=1

ln
(
Nψ̃t!

))
.

Since the above procedure of assigning probability weights will become more and more
accurate as N increases, we would ideally like to have N → ∞. But in this case one can
show20 that

lim
N→∞

lnL

({
ψ̃t

}T
t=1

)
= −

T∑
t=1

ψ̃t ln ψ̃t.

Therefore, taking into account the constraint for the pricing kernel, the MLE of ψt would
solve {

ψ̂t

}T
t=1
≡ arg max−

T∑
t=1

ψ̃t ln ψ̃t, s.t.
{
ψ̃t

}T
t=1
∈ ∆T ,

T∑
t=1

m (θ, t) Re
t ψ̃t = 0.

But the solution of the above MLE problem is also the solution of the relative entropy
minimization problem in Equation (4) (see, e.g., Csiszar (1975)). That is, the KLIC min-
imization is equivalent to maximizing the likelihood in an unbiased procedure for finding
the ψt component of the pricing kernel.

A.2 Additional Bounds and Derivations

Remark 2 (HJ bounds as approximate Q bounds). Let p and q denote the densities of the
state x associated, respectively, with the physical, P , and the risk neutral, Q, probability
measures.21 Assume that

A.1 q and p are twice continuously differentiable;

and that there exists a µp <∞ and a µq <∞ such that

20Recall that from Stirling’s formula, we have

lim
Nψ̃t→∞

Nψ̃t!√
2πNψ̃t

(
Nψ̃t
e

)Nψ̃t
= 1.

21For expositional simplicity, we focus on a scalar state variable, but it is straightforward to extend the
result to a vector state.
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A.2 (Existence of maxima)

∂ ln p

∂x

∣∣∣∣
x=µp

= 0,
∂ ln q

∂x

∣∣∣∣
x=µq

= 0; (29)

A.3 (Finite second moments)

−

[
∂2 ln p

∂x2

∣∣∣∣
x=µp

]−1

≡ σ2
p <∞, −

[
∂2 ln q

∂x2

∣∣∣∣
x=µq

]−1

≡ σ2
q <∞. (30)

We have that in the limit of a small time interval, a second order approximation of the Q
bounds yields22

D

(
P ||Mt

M̄

)
∝ V ar (Mt) , (31)

D

(
Mt

M̄
||P
)

∝ V ar (Mt) . (32)

Proof of Remark 2. We can then rewrite the Q1 and Q2 bounds as

D

(
P ||Mt

M̄

)
≡
∫

ln
dP

dQ
dP =

∫
p ln

p

q
dx (33)

and

D

(
Mt

M̄
||P
)
≡
∫
dQ

dP
ln
dQ

dP
dP =

∫
ln
dQ

dP
dQ =

∫
q ln

q

p
dx. (34)

Given conditions A.1–A.3, we have from a second order Taylor approximation that

ln q ∝ 1

2

∂2 ln q

∂x2

∣∣∣∣
x=µq

(x− µq)2 ≡ −1

2

(x− µq)2

σ2
q

ln p ∝ 1

2

∂2 ln p

∂x2

∣∣∣∣
x=µp

(x− µp)2 ≡ −1

2

(x− µp)2

σ2
p

That is, q and p are approximately (up to second order) Gaussian

q ≈ N
(
µq;σ

2
q

)
, p ≈ N

(
µp;σ

2
p

)
.

Note also that in the limit of a small time interval, by the diffusion invariance principle, we
have σ2

q = σ2
p = σ2. Therefore, plugging the above approximation into Equation (33), we

22For the Q2 bound only, using the dual objective function of the entropy minimization problem, Stutzer
(1995) provides a similar approximation result to the one in Equation (32) that is valid when the variance
bound is sufficiently small. Moreover, for the case of Gaussian i.i.d. returns, Kitamura and Stutzer (2002)
show that the approximation of the Q2 bound in Equation (32) is exact.
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have that in the limit of a small time interval∫
p ln

p

q
dx ≈

∫ [
−1

2

(x− µp)2

σ2
+

1

2

(x− µq)2

σ2

]
pdx

=
1

2σ2

[
−σ2 +

∫
(x− µq)2 pdx

]
=

1

2σ2
{−σ2 +

∫ [
(x− µp)2 + (µp − µq)2

+2 (µp − µq) (x− µp)] pdx}

=
1

2σ2
(µp − µq)2 =

1

2σ2
σ2σ2

ξ =
1

2
σ2
ξ

where the density ξ is a (strictly positive) martingale defined by ξ ≡ dQ
dP , and the one to the

last equality comes from the change of drift implied by the Girsanov’s Theorem (see, e.g.,
Duffie (2005, Appendix D)).
Similarly, from Equation (34) we have∫

q ln
q

p
dx =

1

2
σ2
ξ .

Since Q and P are equivalent measures, Mt ∝ ξt. Therefore, in the limit of a small time
interval, V ar (Mt) ∝ σ2

ξ , implying

D

(
P ||Mt

M̄

)
∝ V ar (Mt) , D

(
Mt

M̄
||P
)
∝ V ar (Mt) .

Definition 5 ( Volatility bound for ψt) For each E [ψt] = ψ̄, the minimum variance ψt
is

ψ∗t
(
ψ̄
)
≡ arg min

{ψt(ψ̄)}T
t=1

√
V ar

(
ψt
(
ψ̄
))

s.t. 0 =E
[
Re
tm (θ, t)ψt

(
ψ̄
)]

and any candidate SDF must satisfy the condition V ar (ψt) ≥ V ar
(
ψ∗t
(
ψ̄
))
.

The solution of the above minimization for a given θ is

ψ∗t
(
ψ̄
)

= ψ̄ + (Re
tm (θ, t)− E [Re

tm (θ, t)])′ βψ̄

where βψ̄ = V ar (Re
tm (θ, t))−1 (−ψ̄E [Re

tm (θ, t)]
)

and the lower volatility bound is given
by

σψ∗ ≡
√
V ar

(
ψ∗t
(
ψ̄
))

= ψ̄

√
E [Re

tm (θ, t)]′ V ar (Re
tm (θ, t))−1 E [Re

tm (θ, t)].

A.3 Data Description

For the quarterly data, we use 4 different sets of assets: i) the 25 Fama–French portfolios,
ii) the 10 momentum-sorted portfolios, iii) the 10 industry-sorted portfolios, and iv) a
combined set of 10 industry, 10 momentum and 6 size and book-to-market sorted portfolios.
For the annual data, we use the same sets of assets except the 25 Fama–French portfolios,
which are replaced by the 6 portfolios formed by sorting stocks on the basis of size and
book-to-market-equity because of the small time series dimension available at the annual
level.
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Our proxy for the market return is the Center for Research in Security Prices (CRSP)
value-weighted index of all stocks on the NYSE, AMEX, and NASDAQ. The proxy for
the risk-free rate is the one-month Treasury Bill rate obtained from the CRSP files. The
returns on all the portfolios are obtained from Kenneth French’s data library. Quarterly
(annual) returns for the above assets are computed by compounding monthly returns within
each quarter (year), and converted to real returns using the personal consumption deflator.
Excess returns on the assets are then computed by subtracting the risk free rate.

Finally, for each dynamic asset pricing model, the information bounds and the non-
parametrically extracted and model-implied time series of the SDF depend on the con-
sumption data. For the standard Consumption-CAPM of Breeden (1979) and Rubinstein
(1976), the external habit models of Campbell and Cochrane (1999) and Menzly, Santos,
and Veronesi (2004), and the long-run risks model of Bansal and Yaron (2004), we use
per capita real personal consumption expenditures on nondurable goods from the National
Income and Product Accounts (NIPA). We make the standard “end-of-period” timing as-
sumption that consumption during quarter t takes place at the end of the quarter. For the
housing model of Piazzesi, Schneider, and Tuzel (2007) aggregate consumption is measured
as expenditures on non-durables and services excluding housing services.

A.4 HJ Kernel Versus Minimum Entropy Kernel

Table A1: Moments of SDF, 1947:Q1–2009:Q4
σ (M∗t ) Sk (M∗t ) Kurt (M∗t )

Panel A: HJ Kernel

25 FF .45 −.01 3.12
Market .22 .61 3.91

10 Momentum .41 .05 3.41
10 Industry .32 .54 4.21

Panel B: Minimum Entropy Kernel

25 FF .91/.71 4.53/2.07 28.4/9.31
Market .26/.24 3.14/1.84 19.1/8.59

10 Momentum .69/.57 3.82/1.78 22.0/7.22
10 Industry .45/.39 5.08/2.32 39.6/11.8

Moments of the SDF computed using the (i) the HJ minimum linear adjustment (Panel A) and (ii) the

minimum relative entropy log-linear adjustment (Panel B). The test assets used in the estimation of the

minimum adjustment consist of the 25 size and book-to-market-equity portfolios (row 1), the market portfolio

(row 2), the 10 momentum portfolios (row 3), and the 10 industry portfolios (row 4). Quarterly data 1947:Q1–

2009:Q4.

A.5 Extracting the Model-Implied SDF for the Menzly, Santos, and Veronesi
(2004) Model

The SDF in this model is given by

Mt = δ (Ct/Ct−1)−γ (St/St−1)−γ , (35)

where δ is the subjective time discount factor, γ is the utility curvature parameter, St =
Ct−Xt
Ct

denotes the surplus consumption ratio, and Xt is the habit component.
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The inverse surplus, Yt = 1
St

, follows a mean-reverting process:

dYt = k
(
Y − Yt

)
dt− α (Yt − λ)σcdBt.

Therefore, using Ito’s Lemma, st ≡ ln (St) = − ln (Yt) follows the process

dst = − 1

Yt
dYt +

1

2Y 2
t

(dYt)
2

= − 1

Yt
k
(
Y − Yt

)
dt+

1

Yt
α (Yt − λ)σcdBt +

1

2Y 2
t

α2 (Yt − λ)2 σ2
cdt

=

[
k
(
1− Y St

)
+

1

2
α2 (1− λSt)2 σ2

c

]
dt+ α (1− λSt)σcdBt.

Therefore, discretizing the process, we have

∆st+1 = k
(
1− Y St

)
+

1

2
α2 (1− λSt)2 σ2

c + α (1− λSt)σcεt+1,

where εt+1 ∼ i.i.d.N (0, 1).
Now, the Euler equation for the return on the aggregate consumption claim is

Et
(
emt+1+rc,tt+1

)
= 1, (36)

where rc,t+1 denotes the continuously compounded return on the consumption claim. We
rely on log-linear approximations for rc,t+1, as in Campbell and Shiller (1988):

rc,t+1 = κ0 + κ1zt+1 − zt + ∆ct+1, (37)

where zt is the log price–consumption ratio, κ1 = ez

1+ez
and κ0 = log(1 + ee

z
) − κ1e

z, and
z denotes the long-run mean of the log price–consumption ratio. We conjecture that zt is
affine in the single state variable st:

zt = A0 +A1st. (38)

In order to verify the conjecture and also solve for A0 and A1, we substitute the expres-
sions for rc,t+1 and zt from Equations (37) and (38), respectively, into the Euler equation
(36):

Et (exp {ln δ − γ∆ct+1 − γ∆st+1 + κ0 + κ1zc,t+1 − zt + ∆ct+1}) = 1,

⇒ Et

exp


ln δ − γµc − γσcεt+1 − γk

(
1− Y St

)
− 1

2γα
2 (1− λSt)2 σ2

c − γα (1− λSt)σcεt+1

+κ0 + κ1A0 + κ1A1

[
k
(
1− Y St

)
+ 1

2α
2 (1− λSt)2 σ2

c + α (1− λSt)σcεt+1 + st

]
−A0 −A1st + µc + σcεt+1


 = 1.

Using the properties of conditionally lognormal random variables, we have

0 = ln δ − γµc − γk + γkY St −
1

2
γα2σ2

c −
1

2
γα2λ2σ2

cS
2
t + γα2σ2

cλSt + κ0 + κ1A0

+ κ1A1k − κ1A1kY St +
1

2
κ1A1α

2σ2
c +

1

2
κ1A1α

2σ2
cλ

2S2
t − κ1A1α

2σ2
cλSt + κ1A1st

−A0 −A1st + µc +
1

2
[−γ − γα (1− λSt) + κ1A1α (1− λSt) + 1]2 σ2

c ,
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which implies

0 =

(
ln δ − γµc − γk − 1

2γα
2σ2
c + κ0 + κ1A0 + κ1A1k + 1

2κ1A1α
2σ2
c

−A0 + µc + 1
2 [−γ − γα+ κ1A1α+ 1]2 σ2

c

)
+

(
γkY + γα2σ2

cλ− κ1A1kY − κ1A1α
2σ2
cλ

+ [γαλ− κ1A1αλ] [−γ − γα+ κ1A1α+ 1]σ2
c

)
St

+ (κ1A1 −A1) st

+

(
−1

2
γα2λ2σ2

c +
1

2
κ1A1α

2σ2
cλ

2 +
1

2
(γαλ− κ1A1αλ)2 σ2

c

)
S2
t .

Using the approximations st ≈ St − 1 and S2
t ≈ −S

2
+ 2SSt, we obtain

0 =

(
ln δ − γµc − γk − 1

2γα
2σ2
c + κ0 + κ1A0 + κ1A1k + 1

2κ1A1α
2σ2
c

−A0 + µc + 1
2 [−γ − γα+ κ1A1α+ 1]2 σ2

c

)
+

(
γkY + γα2σ2

cλ− κ1A1kY − κ1A1α
2σ2
cλ

+ [γαλ− κ1A1αλ] [−γ − γα+ κ1A1α+ 1]σ2
c

)
St

+ (κ1A1 −A1) (St − 1)

+

(
−1

2
γα2λ2σ2

c +
1

2
κ1A1α

2σ2
cλ

2 +
1

2
(γαλ− κ1A1αλ)2 σ2

c

)(
−S2

+ 2SSt

)
.

We use the method of undetermined coefficients and set to zero the constant term and the
coefficient of St to obtain two equations in the two unknowns A0 and A1:

0 =

(
ln δ − γµc − γk − 1

2γα
2σ2
c + κ0 + κ1A0 + κ1A1k + 1

2κ1A1α
2σ2
c

−A0 + µc + 1
2 [−γ − γα+ κ1A1α+ 1]2 σ2

c

)
− (κ1A1 −A1)

−
(
−1

2
γα2λ2σ2

c +
1

2
κ1A1α

2σ2
cλ

2 +
1

2
(γαλ− κ1A1αλ)2 σ2

c

)
S

2
. (39)

and

0 =

(
γkY + γα2σ2

cλ− κ1A1kY − κ1A1α
2σ2
cλ

+ [γαλ− κ1A1αλ] [−γ − γα+ κ1A1α+ 1]σ2
c

)
+ (κ1A1 −A1)

+ 2S

(
−1

2
γα2λ2σ2

c +
1

2
κ1A1α

2σ2
cλ

2 +
1

2
(γαλ− κ1A1αλ)2 σ2

c

)
. (40)

Solving the equations for A0 and A1 gives the equilibrium solution for the log price–
consumption ratio in Equation (38). Note that Equation (40) implies a quadratic equation
for A1:

0 =
(
−κ2

1α
2λσ2

c + Sκ2
1α

2λ2σ2
c

)
A2

1

+

(
−κ1kY − κ1α

2σ2
cλ+ γαλκ1ασ

2
c − κ1αλ [−γ − γα+ 1]σ2

c

+κ1 − 1 + Sκ1α
2σ2
cλ

2 − 2Sγα2λσ2
cκ1

)
A1

+
(
γkY + γα2σ2

cλ+ γαλ [−γ − γα+ 1]σ2
c − Sγα2λ2σ2

c + Sγ2α2λ2σ2
c

)
.

We choose the smaller root of the quadratic equation as the economically meaningful solution
because it implies a positive relation between the log price–consumption ratio and the
surplus consumption ratio, unlike the larger root, which implies a negative relation between
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the variables.
We proxy the log price–consumption ratio using the observable log price–dividend ratio

and use Equation (38) to extract the time series of the state variable st. This extracted time
series can then be used to obtain the time series of the model-implied SDF and its missing
component.

Note that the model is calibrated quarterly. Since we evaluate the empirical plausibility
of models at the quarterly as well as annual frequencies, we obtain the annual estimates of
the model parameters as follows. First, we simulate a long sample (five million observations)
of the state variable Y from

∆Yq,τ+1 = kq
(
Y q − Yq,τ

)
− αq (Yq,τ − λq)σq,cετ+1, ετ+1 ∼ i.i.d.N (0, 1) ,

treating the calibrated quarterly parameter values as the truth. The subscript q in the
above equation denotes quarterly. Second, we aggregate the simulated data into annual
non-overlapping observations:

Ya,t = Yq,τ + Yq,τ−1 + Yq,τ−2 + Yq,τ−3, for τ = 1, 2, 3, . . .

∆Ya,t+1 = Ya,t+1 − Ya,t,

where τ denotes quarter τ and t denotes year t. Finally, we estimate the model parameters
at the annual frequency from the equation

∆Ya,t+1 = ka
(
Y a − Ya,t

)
− αa (Ya,t − λa)σa,cet+1, εt+1 ∼ i.i.d.N (0, 1) ,

treating the state variable Ya,t as observed and using the method of moments approach.
This step produces the following annual estimates of the parameters: Y a = 33.99531, ka =
.8689003, αa = 3.49499, λa = 29.843719. The mean, µa,c, and volatility, σa,c, of the
aggregate consumption growth are set equal to their sample values.

A.6 Extracting the Model-Implied SDF for the Bansal and Yaron (2004)
Model

The SDF in this model is given by

Mt+1 = δθ
(
Ct+1

Ct

)− θ
ρ

Rθ−1
c,t+1,

where Rc,t+1 is the unobservable gross return on an asset that delivers aggregate consump-
tion as its dividend each period.

Using the Campbell–Shiller log-linearization for rc,t+1 ≡ ln (Rc,t+1),

rc,t+1 = κ0 + κ1zt+1 − zt + ∆ct+1,

where zt is the log price–consumption ratio, and noting that the model implies that the
equilibrium zt = A0 +A1xt +A2σ

2
t , we have

lnMt = [θ ln δ + (θ − 1) (κ0 + κ1A0 −A0)]− γ∆ct+1

+ (θ − 1)κ1A1xt+1 + (θ − 1)κ1A2σ
2
t+1 − (θ − 1)A1xt − (θ − 1)A2σ

2
t , (41)

This is Equation (24) in the text. To obtain the time series of the SDF and its ψ compo-
nent, we extract the state variables, xt and σ2

t , from the observed data using two different
procedures.
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First, we extract the state variables from the consumption data. In order to do so, we
assume the same time series specification for the aggregate consumption growth process as
in Bansal and Yaron (2004), with the only exception that we introduce a square-root process
for the variance (as in Hansen, Heaton, Lee, and Roussanov (2007)):

∆ct+1 = µ+ xt + σtηt+1 (42)

xt+1 = ρxt + φeσtet+1 (43)

σ2
t+1 = σ2(1− ν1) + ν1σ

2
t + σwσtwt+1. (44)

Note that the Bansal and Yaron (2004) model is calibrated at the monthly frequency with
the monthly parameter values being: µ = .0015, ρ = .979, φe = .044, σ = .0078, ν1 = .987,
σw = .00029487. We need to extract the quarterly state variables, xt,q and σ2

t,q. First,
we simulate a long sample (five million observations) from the above system, treating the
given parameter values as the truth and retaining the simulated state variables. Second, we
aggregate the simulated data into quarterly non-overlapping observations:

∆ct,q = ∆ct + ∆ct−1 + ∆ct−2, for t = 3, 6, 9, . . .

xt,q = xt + xt−1 + xt−2

σ2
t,q = σ2

t + σ2
t−1 + σ2

t−2

Third, we estimate the model parameters in Equations (42)–(44) using these quarterly
observations and treating the state variables as observed, which produces the following
quarterly estimates of the parameters:

ρq = ρ3
m = .9383137

v1,q = v3
1,m = .9615048

µq = 3× µm = .0045

σ2
q = Mean

(
σ2
t,q

)
= .0001822490

φe,q =

√
V ar (xt+1,q − ρqxt,q)

σ2
q

= .1084845

σw,q =

√√√√V ar
(
σ2
t+1,q − σ2

q (1− v1,q)− v1,qσ2
t,q

)
σ2
q

= 0.0007328592,

where the variables with subscript m are the monthly calibrated values, and the means
and variances are the ones obtained in the simulated sample. The fourth step is to run a
Bayesian smoother through the historical quarterly consumption growth treating the quar-
terly parameters as being known with certainty. This smoother produces estimates of the
quarterly state variables x̂t,q and σ̂2

t,q.
The same steps can be applied to obtain the parameter estimates and, therefore, the time

series of the state variables at the annual frequency. In this case, we have: ρa = .7751617;
v1,a = .8546845; µa = .018; σ2

a = .0007299038; φe,a = .3853643; σw,a = .00270020.
Using the point estimates of the parameters and the extracted time series of the state

variables at the relevant frequency, the SDF and its missing ψ component are obtained from
Equation (24).

Our second procedure for extracting the state variables relies on the asset market data.
For the log-linearized version of the model, the observable log market-wide price–dividend
ratio, zm,t, and the log gross risk free rate, rf,t, are affine functions of the state variables
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xt and σ2
t . Therefore, Constantinides and Ghosh (2011) argue that these affine functions

may be inverted to express the unobservable state variables, xt and σ2
t , in terms of the

observables, zm,t and rf,t. Following this approach, the pricing kernel in Equation (41) can
be expressed as a function of the observable variables:

lnMt = c′1 − γ∆ct + c′3

(
rf,t −

1

κ1
rf,t−1

)
+ c′4

(
zm,t −

1

κ1
zm,t−1

)
, (45)

where the parameters (c′1, c
′
3, c
′
4) are functions of the underlying time-series and preference

parameters.
Since the model is calibrated at the monthly frequency, we obtain the pricing kernels at

the quarterly and annual frequencies by aggregating the monthly kernels. For instance, the
quarterly pricing kernel, M q, is obtained by

lnM q
t = −γ∆qct + lnψqt ,

where ∆qct denotes the quarterly log-consumption difference and lnψqt is given by

lnψqt = 3c′1 +
2∑
i=0

[
c′3 (rf,t−i − κ1rf,t−i−1) + c′4 (zm,t−i − κ1zm,t−i−1)

]
.

Therefore, using the monthly calibrated parameter values from Bansal and Yaron (2004)
and the historical monthly time series of the market-wide price–dividend ratio and risk free
rate, we obtain the time series of the SDF and its missing component at the quarterly and
annual frequencies from the above two equations.

A.7 Additional Robustness Checks

A.7.1 Entropy Bounds When All Model Parameters Are Simultaneously Al-
lowed to Vary

In the empirical analysis on the entropy bounds, we focused on one-dimensional bounds
as a function of the risk aversion parameter, γ, while fixing the other parameters at the
authors’ calibrated values. In other words, we computed the minimum values of γ at which
the model-implied SDFs satisfy the HJ, Q, M , and Ψ bounds, while holding the remaining
model parameters fixed at their calibrated values. As a robustness check, in this section,
we compute the minimum values of γ at which the model-implied SDFs satisfy the bounds,
while allowing the remaining model parameters to simultaneously vary over intervals that
extend for two standard errors around their calibrated values.

For the external habit models of Campbell and Cochrane (1999) and Menzly, Santos,
and Veronesi (2004), the model-implied SDFs are obtained by extracting the surplus con-
sumption ratio from the aggregate consumption data. While the state variable may also
be extracted from the price–dividend ratio, the Menzly, Santos, and Veronesi (2004) model
admits a closed form solution for the price–dividend ratio only for γ = 1, and this motivates
our choice for the extraction of the state variable in the external habit models. For the
Bansal and Yaron (2004) long run risks model, on the other hand, we extract the two state
variables by inverting the closed form solutions for the price–dividend ratio and risk free
rate. While the state variables can also be extracted from the aggregate consumption data
using Bayesian smoothing procedures, the computing time makes this prohibitively expen-
sive if allowing all the parameters to vary simultaneously (since the Bayesian smoothing
would have to be computed for each set of parameter values considered). Finally, for the
Piazzesi, Schneider, and Tuzel (2007) model, the state variable is directly observable from
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the BEA tables and, therefore, does not need to be extracted from either the consumption
or the asset market data.

The results are presented in Table A2, which shows that, for each model, the HJ, Q, M ,
and Ψ bounds are satisfied for smaller values of γ when the other parameters are allowed to
vary simultaneously compared to Tables VI and VII where the other parameters are held
fixed. However, as in the latter tables, the CC, MSV, and PST models still require much
larger values of risk aversion to satisfy the bounds compared to the authors’ calibrated
values at the quarterly frequency.

Table A2: Bounds for RRA When All Parameters Are Allowed to Vary
HJ Bound Q1/Q2 Bounds M1/M2 Bounds Ψ1/Ψ2 Bounds

Panel A: Quarterly Data, 1947:Q1–2009:Q4

CC 2.2 4.0/3.8 4.0/3.8 4.3/4.2
MSV 29.0 36.2/35.9 38.0/38.1 50.9/52.5
BY 3.0 4.0/4.0 4.0/4.0 4.0/4.0
PST 19.1 25.2/24.0 25.4/24.1 24.1/23.1

Panel B: Annual Data, 1929–2009

CC 0.1 0.1/0.1 0.1/0.1 0.1/0.1
MSV 11.3 18.6/16.2 19.3/17.2 28.6/27.2
BY 4.0 4.0/4.0 4.0/4.0 4.0/4.0
PST 4.3 6.8/5.8 6.8/5.8 6.3/5.4

Minimum values of the utility curvature parameter γ at which the model-implied SDF satisfies the HJ

(column 1), Q (column 2), M (column 3), and Ψ (column 4) bounds using quarterly data 1947:Q1–2009:Q4

(Panel A) and annual data 1929–2009 (Panel B). Columns 2–4 have two entries in each cell, which indicate

whether the filtered ψ∗-component of the SDF and, therefore, the filtered SDF are estimated using Equation

(6), shown on the left, or Equation (4), shown on the right. Other notation as in Table I.

A.7.2 Entropy Bounds When the Risk Free Rate is Included as an Additional
Test Asset

In the empirical analysis, we have used the excess returns (in excess of the risk free rate)
on a broad cross-section of risky assets to extract the most likely SDF and obtain entropy
bounds for the SDF and its components. As a robustness check, we repeat the empirical
exercise using as test assets the gross returns (instead of the excess returns) on the cross-
section of size- and book-to-market-equity-sorted, momentum-sorted, and industry-sorted
portfolios, and the return on the risk free asset.

In this case, the relevant Euler equation is

1N = E [m (θ, t)ψtRt]

where Rt ∈ RN is a vector of gross returns and 1N is an N -dimensional vector of ones. Under
weak regularity conditions, the above pricing restrictions for the SDF can be rewritten as

ψ̄−11N = EΨ [m (θ, t) Rt]

or, as
M̄−11N=EQ [Rt]

where x̄ ≡ E [xt],
ψt
ψ̄

= dΨ
dP , and Mt

M
= dQ

dP . Therefore, Equations (4)–(7) can be reformulated,
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respectively, as Equations (46)–(49) below:

Ψ̂ ≡ arg min
Ψ

D (Ψ||P ) ≡ arg min
Ψ

∫
dΨ

dP
ln
dΨ

dP
dP s.t. ψ̄−11N=EΨ [m (θ, t) Rt] , (46)

with its dual solution given (up to a positive scale constant) by

ψ̂t =
eλ(θ)′[m(θ,t)Rt−ψ̄−11N ]

T∑
t=1

eλ(θ)′[m(θ,t)Rt−ψ̄−11N ]

=
eλ(θ)′m(θ,t)Rt

T∑
t=1

eλ(θ)′m(θ,t)Rt

, ∀t

where λ(θ) ∈ RN is the solution to the following unconstrained convex problem

λ(θ) ≡ arg min
λ

1

T

T∑
t=1

eλ
′[m(θ,t)Rt−ψ̄−11N ];

Q̂ ≡ arg min
Q

D (Q||P ) ≡ arg min
Q

∫
dQ

dP
ln
dQ

dP
dP s.t. M̄−11N=EQ [Rt] , (47)

with its dual solution given (up to a positive scale constant) by

M̂t =
eλ
′Rt

T∑
t=1

eλ′Rt

, ∀t

where λ ∈ RN is the solution to

λ(θ) ≡ arg min
λ

1

T

T∑
t=1

eλ
′[Rt−M̄−11N ];

Ψ̂ ≡ arg min
Ψ

D (P ||Ψ) ≡ arg min
Ψ

∫
ln
dP

dΨ
dP s.t. ψ̄−11N=EΨ [m (θ, t) Rt] , (48)

with its dual solution given (up to a positive scale constant) by

ψ̂t =
1

T
[
1 + λ(θ)′

(
m (θ, t) Rt − ψ̄−11N

)] , ∀t
where λ(θ) ∈ RN is the solution to

λ(θ) ≡ arg min
λ
−

T∑
t=1

log(1 + λ′
(
m (θ, t) Rt − ψ̄−11N

)
);

Q̂ ≡ arg min
Q

D (P ||Q) ≡ arg min
Q

∫
ln
dP

dQ
dP s.t. M̄−11N=EQ [Rt] (49)

with its dual solution given (up to a positive scale constant) by

M̂t =
1

T
[
1 + λ(θ)′

(
Rt − M̄−11N

)] , ∀t
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where λ(θ) ∈ RN is the solution to

λ(θ) ≡ arg min
λ
−

T∑
t=1

log(1 + λ′
(
Rt − M̄−11N

)
).

Two observations are in order about the above results. First, looking at the dual opti-
mizations, it is clear that different M̄ and ψ̄ will now matter in determining the solution, i.e.,
changes in the means will change the estimated SDF, and not simply as a scaling. Second,
M̄ can be calibrated easily, since from the Euler equation we have

M̄ ≡ E [m (θ, t)ψt] = E
[
1/Rft

]
,

and, therefore, can be estimated using a sample analogue. ψ̄, on the other hand, can be
recovered from

M̄ ≡ E [m (θ, t)ψt] = Cov (m (θ, t) ;ψt) + m̄ψ̄,

∴ ψ̄ =
M̄ − Cov (m (θ, t) ;ψt)

m̄
.

Therefore, to calibrate ψ̄, we can employ the following iterative procedure:

1. Set ψ̄ = M̄
m̄ =

1
T

∑T
t=1 1/Rft

1
T

∑T
t m(θ,t)

as a starting guess.

2. Given ψ̄, use the above entropy minimization procedures to estimate
{
ψ̂t

}T
t=1

(up to

a positive constant κ).

3. Identify the scaling constant κ using the fact that the Euler equation for the risk free
rate implies (as T →∞)

κ
1

T

T∑
t=1

m (θ, t) ψ̂t =
1

T

T∑
t=1

1/Rft ⇒ κ =

∑T
t=1 1/Rft∑T

t=1m (θ, t) ψ̂t
.

4. Compute an updated ψ̄ using

ψ̄ =
M̄ − κĈov

(
m (θ, t) ; ψ̂t

)
m̄

=

1
T

∑T
t=1 1/Rft − κĈov

(
m (θ, t) ; ψ̂t

)
1
T

∑T
t m (θ, t)

where Ĉov (.) is the sample analogue based covariance estimator.

5. With the new ψ̄ in hand, go back to Step 2 and repeat until convergence of ψ̄ is
achieved. Once convergence is achieved, the exact estimate (no longer merely up to a
constant) of ψt is given by κ× ψ̂t.

Using the above approach, Table A3 repeats the analysis in Table VI when the set of as-
sets consists of the gross returns (instead of excess returns) on the 6 size and book-to-market-
equity sorted portfolios of Fama–French, 10 industry-sorted portfolios, 10 momentum-sorted
portfolios, and the risk free asset. The table shows that the inclusion of the risk free rate as
an additional asset in the estimation leaves the HJ, Q, M , and Ψ bounds on the SDF and
its components virtually unchanged for all the asset pricing models considered.
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Table A3: Bounds for RRA, Quarterly Data, 1947:Q1–2009:Q4
HJ Bound Q1/Q2 Bounds M1/M2 Bounds Ψ1/Ψ2 Bounds

Panel A: State Variables Extracted From Consumption Data

CC 9 16/14 14/14 19/21
MSV 31 41/38 41/42 60/61
BY > 100 > 100/ > 100 > 100/ > 100 > 100/ > 100
PST 69 93/86 112/106 86/85

Panel B: State Variables Extracted From Asset Prices

CC 18 39/43 33/46 47/48
MSV 69 90/84 > 100/ > 100 > 100/ > 100
BY 4 5/5 5/5 5/5

Minimum values of the utility curvature parameter γ at which the model-implied SDF satisfies the HJ

(column 1), Q (column 2), M (column 3), and Ψ (column 4) bounds using quarterly data 1947:Q1–2009:Q4.

Columns 2–4 have two entries in each cell, which indicate whether the filtered ψ∗-component of the SDF and,

therefore, the filtered SDF are estimated using Equation (6), shown on the left, or Equation (4), shown on

the right. Panels A and B present results when the models’ state variables are extracted from consumption

data and asset market data, respectively. Other notation as in Table I.

The results in the other tables also remain largely similar upon inclusion of the risk free
rate and are omitted for the sake of brevity.
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